
Software Engineering in Startup Companies Juergen Brendel
Be honest, what you really want is to get rich here! 8

Feature: Making Big Bucks in Java Ed Zebrowski
A “how-to” guide for the Java programmer 9

Java Electronic Commerce Framework Mukul Sood
JEFC supports secure e-commerce transactions on Internet and intranets 16

Create a Distributed Internet Search Mechanism Eric Greenfeder
Glue Web and legacy systems together using CGI applications 24

Interfacing Transaction Services Part 2 Maros Cunderlik
Java’s foray into enterprise computing 32

A String Bean: Making JavaBeans with VAJ Mike Fichtelman
The holy grail of IDEs for object-oriented development 40

CORBACorner: JDK Naming Services David Cittadini
COSnaming and JNDI Source and performance comparison 56SYS-CON

PUBLICATIONS

Under the Sun

Enterprise Application
Development Using

Java Blend
by Syed Q. Abbas pg.50

Straight Talking

Java at Fault?
by Alan Williamson pg.22

Cosmic Cup

Other Java APIs
and Products

by Ajit Sagar pg.46

Product Reviews
SuperCede

by Ed Zebrowski pg.54
...

DashO-Pro
by Ed Zebrowski pg.43

The Grind
GUI Client/Server vs.

Java-Internet/Web
Paradigms

by Java George pg.66

Beginnings
by Sean Rhody pg.7

Volume:3 Issue:7, 1998

J a v a D e v e l o p e r s J o u r n a l . c o m

EARN BIGBUCK$WITH JAVAEARN BIGBUCK$WITH JAVA
TM

2 • VOLUME: 3 ISSUE: 7Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Full Page Ad

3VOLUME: 3 ISSUE: 7 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Full Page Ad

4 • VOLUME: 3 ISSUE: 7Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Full Page Ad

5VOLUME: 3 ISSUE: 7 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

EDITORIAL ADVISORY BOARD
Ted Coombs, Bill Dunlap, David Gee, Arthur van Hoff,

Brian Maso, Sean Rhody, Kim Polese, Rick Ross,
Richard Soley, George Paolini

Editor-in-Chief: Sean Rhody
Art Director: Jim Morgan

Executive Editor: Scott Davison
Managing Editor: Anita Hartzfeld

Senior Editor: M’lou Pinkham
Editorial Assistant: Brian Christensen

Technical Editor: Bahadir Karuv
Visual J++ Editor: Ed Zebrowski

Visual Café Pro Editor: Alan Williamson
Product Review Editor: Jim Mathis

Games & Graphics Editor: Eric Ries
Tips & Techniques Editor: Brian Maso

WRITERS IN THIS ISSUE
Syed Q, Abbas, Juergen Brendel, David Cittadini,

Maros Cunderlik, Mike Fichtelman, Eric Greenfeder,
George Kassabgi, Sean Rhody, Ajit Sagar,

Mukul Sood, Alan Williamson, Ed Zebrowski

SUBSCRIPTIONS
For subscriptions and requests for bulk orders,

please send your letters to Subscription Department

Subscription Hotline: 800 513-7111
Cover Price: $4.99/issue.

Domestic: $49/yr. (12 issues) Canada/Mexico: $69/yr.
Overseas: Basic subscription price plus air-mail postage

(U.S. Banks or Money Orders). Back Issues: $12 each

Publisher, President and CEO: Fuat A. Kircaali
Vice President, Production: Jim Morgan
Vice President, Marketing: Carmen Gonzalez

Advertising Manager: Claudia Jung
Advertising Assistant: Erin O’Gorman

Advertising Intern Jaclyn Redmond
Accounting: Ignacio Arellano

Senior Designer: Robin Groves
Designer: Alex Botero

Webmaster: Robert Diamond
Senior Web Designer: Corey Low

Customer Service: Rae Miranda
Sian O’Gorman
Paula Horowitz

EDITORIAL OFFICES
SYS-CON Publications, Inc.

39 E. Central Ave., Pearl River, NY 10965
Telephone: 914 735-1900 Fax: 914 735-3922

Subscribe@SYS-CON.com
JAVA DEVELOPER’S JOURNAL (ISSN#1087-6944) is

published monthly (12 times a year) for $49.00 by SYS-CON
Publications, Inc., 39 E. Central Ave., Pearl River, NY 10965-2306.

Application to mail at Periodicals Postage rates is pending at
Pearl River, NY 10965 and additional mailing offices.

POSTMASTER: Send address changes to:
JAVA DEVELOPER’S JOURNAL, SYS-CON Publications, Inc.,

39 E. Central Ave., Pearl River, NY 10965-2306.

© COPYRIGHT
Copyright © 1997 by SYS-CON Publications, Inc. All rights reserved. No part of this
publication may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopy or any information storage and retrieval system,

without written permission. For promotional reprints, contact reprint coordinator.
SYS-CON Publications, Inc. reserves the right to revise, republish and authorize its

readers to use the articles submitted for publication.

ISSN # 1087-6944

Worldwide Distribution by
Curtis Circulation Company

739 River Road, New Milford NJ 07646-3048Phone: 201 634-7400

BPA Membership Applied For
Java and Java-based marks are trademarks or registered trademarks of

Sun Microsystems, Inc. in the United States and other countries.
SYS-CON Publications, Inc. is independent of Sun Microsystems, Inc.

SYS-CON
PUBLICATIONS

In this month’s cover story we focus on
how to earn big money with Java on three
levels. JDJ’s feature brings you practical
tips for the Java programmer by both Ed
Zebrowski, JDJ's product review editor,
and Sean Rhody. We also have a somewhat
technical discussion by Juergen Brendel
covering the software engineering issues in
startup companies. We conclude the cover
story with a feature on the “Java Electronic
Commerce Framework,” which concerns
Sun's JECF architecture for established
businesses.

New JDJ Editor
I’m pleased to announce that Sean

Rhody has joined Java Developer's Jour-
nal as editor-in-chief. Sean has been the
chief editor of JDJ's sister publication,
PowerBuilder Developer's Journal, for
the past four years. You’ve been reading his
multitier series in JDJ, volume 4, issues 4
and 6. Starting with this issue you’ll see his
editorial direction and influence in JDJ.

What’s New at JDJ?
With this issue you’re likely to come

across JDJ in many more newsstands than
before. This is the first issue of JDJ that’s
being distributed by Curtis Circulation
Company. Curtis, the world’s largest maga-
zine distributor, can take most of the credit
for our expanded newsstand distribution.
Over the past twelve months our newsstand
sales have increased more than tenfold,
making JDJ one of the fastest growing tech-
nology publications anywhere. You’ll also
notice that we’ve redesigned our cover.

Industry Meetings at JDJ Offices
Since JavaOne we’ve been keeping busy

meeting with Java vendors to bring you the
latest developments from the Java industry.
Last month we had visitors from several
companies who presented new versions of
their Java products. We’ll be bringing more
information on these new and exciting prod-
ucts in our upcoming issues.

Among several other new products, on
July 16 we got a sneak preview of IBM’s
Visual Age 2.0 Enterprise Edition. The prod-
uct is scheduled to ship in August and we
will have an extended feature story on this
new release in our next issue.

Big Money in Java

FROM THE PUBLISHER

Fuat A. Kircaali

On July 16 IBM’s Rick Weaver visited
JDJ offices to present a sneak preview

of IBM’s Visual Age 2.0 Enterprise Edition.
Photo Left to right: Rick Weaver (IBM),

Corey Low (JDJ), Stephanie Clark (IBM)
and Fuat Kircaali (JDJ).

Meredith Fuller, and Michelle Guile, SCM
product manager of MKS, announced Source
Integrity 3.1 online in JDJ offices on July 14.

Novera Software cofounder Michael Frey
visited JDJ to update our readers.

Bob Gleason, president and CEO of Riverton
Software, presented HOW for Java.

6 • VOLUME: 3 ISSUE: 7Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Full Ad

7VOLUME: 3 ISSUE: 7 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Almost invariably, when I write an article I know pretty much what I want to say, and the part
I have the most difficulty with is the introduction. This is my first column as editor-in-chief of Java
Developer’s Journal, so while most of you are familiar with our magazine, many of you may be
less familiar with me. I’d like to take this opportunity to introduce myself, and also describe where
I think we’ll be taking JDJ over the next few months.

First of all, this is the second magazine I’ve edited – the first being our sister publication,
PowerBuilder Developer’s Journal (PBDJ). I’ve been writing about technology for approxi-
mately five years now, starting with several articles in PBDJ, then a regular column and finally as
editor for the past two years.

During that period I think we’ve seen the software version of Moore’s Law, the one that states
that the number of transistors on a chip will double, roughly, every eighteen months. That soft-
ware version is of course the programming paradigm under which we work and it takes longer
than eighteen months, but it changes just the same. I started working in the industry as
client/server was enduring its growing pains, and relational databases were just beginning to pen-
etrate smaller companies. I spent a good deal of time developing PowerBuilder applications and
frameworks to do various tasks.

Then, two or three years ago, the paradigm began to shift again. We started talking about appli-
cation partitioning and three tier architecture. Eventually the horsepower (hardware and soft-
ware) was available at the right price to physically make three tier design architecturally feasible.

Right along with that came the explosive growth of the Internet, and HTML as the default lan-
guage. Java stepped up as a language that was suitable for any number of purposes, particularly
for platform-independent networked applications and for simple but powerful multitasking.

As a technical architect for a large consulting company, I have been involved with Java and
Internet programming for several years now. I’m also happy to have the opportunity to move to
this magazine and help guide its course as we discuss all things Java.

In particular, I find Java a challenging language to write about and describe. That’s because no
one vendor really owns Java in the same sense that a single vendor owned PowerBuilder or Visu-
al Basic. We’ve got Java development products from a dozen companies, large and small, each
with its own take on what is the right mix of visual assistance to the programmer. We’ve got hun-
dreds of smaller ISVs creating JavaBeans that we can use. We’ve got companies developing hard-
ware that runs a Java OS and companies developing VMs for an ever-increasing number of oper-
ating systems. The best way to describe this is to call it a “movement.”

What we’ll try to do over the course of my tenure here is to structure our information and
content in such a way that it will help you make sense of the various issues and choices you have
in the Java world. We’ll be doing our JDJ Reader’s Choice Awards shortly to select some of the
best and brightest products and services available for Java.

One of my current focuses is on distributed architectures, which is a natural area to employ
Java. We’ll try to pass along informative articles on building such systems with Java and CORBA,
and point out alternatives (see my series of articles in JDJ on Jaguar CTS, for example).

We’ll also focus on general techniques for programming in Java, with articles that explain how
to take on specific tasks that Java provides particularly elegant solutions for, or just plain inter-
esting code. And we’ll try to keep you abreast of the various developments in the industry so you
can make informed decisions on whose tools to use.

If I’ve left out some of your favorite topics, if you just want to see something in particular or if
you have a proposal for the magazine, you can contact me at roadhog@nac.net. I do try to answer
all e-mails, including any constructive criticisms you may have. I hope you’ll enjoy reading JDJ as
much as we enjoy publishing it; I’m glad to be on board.

About the Author
In addition to being editor-in-chief of Java Developer’s Journal, Sean Rhody is a senior consultant with
Computer Sciences Corporation where he specializes in application architecture, particularly distributed systems.
You can contact Sean at roadhog@nac.net.

FROM THE EDITOR

Sean Rhody

Beginnings

JDJ COVER STORY

Software
Engineering
in $tartup
Companies

Software
Engineering
in $tartup
Companies Be Honest,

What You Really Want
is to Get Rich Here

Be Honest,
What You Really Want

is to Get Rich Here
by Juergen Brendel

9VOLUME: 3 ISSUE: 7 •

The Problem
So you joined a startup. You have plenty

of stock options, a new company to
build and a lot of work ahead
of you. What’s motivat-
ing you is the
challenge and
the chance to
learn and grow.
But be honest. You
really want your
stock options to
be worth some-
thing one
day. You

want to
get rich

here.
Being a Java

developer, you are in
the right position. The

fact that your company uses
this language, possibly even in the

Internet/intranet context, will practically
guarantee you the attention of investors
and the stock market. But it’s a long way
from early hype to long-term business suc-
cess. There are a few exceptions, but most
companies will need a solid product and
many happy customers to have any kind of
success. Building a quality product, howev-
er, is where the problem begins. Classical
approaches to software engineering (SE) do
not work in a startup environment, but
without SE your product will lack quality.

Classical Software Engineering
Software engineering is the application

of engineering principles to the building of
software. Classical SE suggests that devel-
opment takes place in stages: analysis,
design, implementation and testing. It
defines the techniques and processes used
to set up a system of control, testing and
approval at every one of these stages. The
SE processes require each stage to be com-
pleted before the next stage begins,
because the output of a stage must first be
understood, tested and approved. As you
can easily imagine, SE requires some
bureaucracy. However, when properly
applied, SE holds the key to timely delivery
of quality software.

The Startup Difference
Startups face several unique hurdles

that must be overcome to ensure success.
Therefore, classical SE techniques and prin-
ciples need to be modified for this special
environment:

1. Short time to mar-
ket

2. Immature, undefined
market

3. Fast growth in the
number of employees

It is often argued that
the deliberate processes of

classical SE are not applica-
ble under these conditions.
It is my contention that

some of the basic SE princi-
ples, processes and methods
can be utilized successfully,
even by startups, to make the

company operate more effi-
ciently. As one experienced

developer put it, “Engineering is
making the right compromises.” This is
especially true for any startup. By compro-
mising at the right places and modifying SE
for this special environment, you can come
up with a version of SE that will work for
startups, without creating too much
bureaucracy.

Understanding the Requirements
In classical SE the life cycle of a software

product starts with requirements analysis.
The goal is to identify and quantify all cus-
tomer requirements through close interac-

tion with the customer and market
research. It is important to quantify require-
ments. For example, a requirement could
either read “the data packets should not be
too big” or it could state that “the data
packets should not exceed 500 bytes in
size.” The first requirement is not quanti-
fied; its satisfaction is left to interpretation.
The second one is quantifiable and there-
fore testable. Since all requirements are list-
ed, and each one will later have a test
assigned to it, a successful pass of all tests
indicates that the development effort has
been completed.

In startups, the analysis phase does not
proceed in this manner. There are no cus-
tomers in the beginning from whom you
can get feedback. Also, the market is still so
new, no one can say what is really needed.
How do you identify all customer require-
ments? You don’t. You use your common
sense, experience and creativity to come
up with an initial set of requirements.
Should they be formulated in a quantifiable
manner? That depends. You may be more
certain about some aspects of your product
than others. Unless you have an explicit
statement from customers, it doesn’t make
sense for management or marketing to
make up an artificial number that is not
based on real-world input. It would be a
waste of engineering time and money to try

Big Bucks
in Java
by Ed Zebrowski

Three years ago I was earning a meager
living by working at a local resort hotel. In my
spare time, I found a nice diversion playing
around with my 486. Soon thereafter, I was
making good side money by developing Web
pages, and occasionally finding some techni-
cal consultation work. It was right about then
that I became aware of a new programming
language. It had been used, I was told, to run
the microprocessors in small appliances such
as toasters and microwave ovens. Because of
the way this new language was structured, it
lent itself perfectly to Internet applications. I
was both fascinated and challenged by this
strange and wonderful new brew, so I decid-
ed to learn as much about it as I could.

I didn’t realize it at the time, but I was
standing in the filter basket of what was to be
the largest “percolation” of business and
technology the world had ever seen. By sip-

ping from this cup of Java, the caffeine rush
would carry me well into the next century.

Maybe you’re also ready to take this
ride. Perhaps you are familiar with another
programming language and are just now
starting to realize the potential of Java, or
maybe you’re just bored with your job
down at the ice cream parlor. Whatever the
case may be, Java now provides unprece-
dented opportunities, if you know how to
look for them.

Step One: Sharpening Your Skills
We all like to think we know everything

about Java. The truth of the matter is that
Java, like most programming languages,
requires constant updating and upgrading of
skills to stay current. Nothing is more awk-
ward than taking a contract or job and then
discovering that you’re not as up-on-things as
you thought. This can be avoided by brushing
up on your Java skills. The method you chose
to do this will vary, depending on how much
“brushing up” you think you’ll require. If it’s
only been a little while since your last Java
project, a visit to one of many Usenet groups
may be all you need. I was able to find hun-
dreds of these by running a Usenet search on
my server. They cover broad topics, such as
CORBA development, and narrower ones,
such as the use of a specific IDE. This would

Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Big Bucks
in Java

10 • VOLUME: 3 ISSUE: 7Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

to satisfy artificial targets. List all the
requirements you can think of and quantify
those that you can. Don’t quantify require-
ments with values that have no basis,
although you should list a requirement
even if you cannot quantify it. By listing
requirements and making sure they are
addressed during development, you ensure
that no requirements are missed. Later,
when you do finally get some customer
feedback, you can try to fill in the blanks in
the requirement list. Even though this goes
against some of the foundations of classical
SE, it is one of the compromises you have to
make in a startup.

New requirements that have not been
addressed in the initial analysis and design
will be set aside for the next release of the
software whenever possible. Because of the
uncertainties that go with developing a
brand new product for a brand new market,
most of the compromises will be made in
the analysis phase of the SE process when
you work in a startup company.

Designing a System
Once the requirements have been stat-

ed, you can begin to design a system that
meets them. Since a startup operates in a
new market with potentially new technolo-
gy, your work is likely to contain a signifi-
cant research component. A prototype may
be developed even during analysis or
design. Some assumptions may turn out to
be technically infeasible. This may force
you to change the requirements and modify
the design. The analysis and design stages,
so nicely sequential in classical SE, are like-
ly to pass through multiple iterations of the
analysis, research and design phases in
startups.

The design stage is important for any
product in any company, which is especial-
ly true in a startup. Markets and require-
ments change constantly. Hence, your
product will need to change a lot over time.
In fact, the first version of your software
will probably have to be redone after its
release. It would be great if you could just
rearrange the product at this point rather
than rewrite it. To a large extent, this is pos-
sible if you design your system out of small,
independent objects. Well-designed objects
exhibit high cohesion and low coupling.

High cohesion means that the object’s
data and methods remain focused on one
task or functionality. The object is an expert
at doing one thing. If you have to modify this
object’s functionality, the changes should
not affect other objects.

JDJ COVER STORY

also be very useful if you’ve just taken a job
that requires the use of an IDE that you’re not
familiar with.

If you haven’t developed a Java project
recently or if you’re new to the language,
more thorough instruction may be in order.
There are several good books that can bring
you up to speed, and a visit to your local
library or favorite bookstore can fetch the
material you need. If you think you may need
a more structured learning environment, there
are a couple of suggestions I can make. One
excellent place for online training is ZD Uni-
versity. ZDU offers a full line of courses on
everything from Java development to Internet
business strategy. Drop by their Web site at
www.zdu.com for more information. For those
of you who prefer a classroom atmosphere,
check your local newspaper. Most cities have
a good selection of technical colleges that
now offer great Java instruction. I was able to
find at least twelve of these, and they offered
everything from “Java as a First Programming
Language” to some quick brush-up classes.
Call them for more information. Financial aid
and job placement is usually available.

Finding Regular Full-Time Employment
Who hasn’t dreamed of landing that per-

fect job? A great schedule, excellent pay and
health insurance are usually the attractive
features that lure Java programmers into
these positions. The type of salary you’ll earn
depends on many factors. Entry level Java
programmers can expect between $30k -
$40k a year. I’ve noticed that some compa-

nies will pay the more experienced and pro-
ficient Java developer as much as $70k-
$100k. Bear in mind, to earn that kind of
money you’ll need to be proficient at other
software development languages besides
Java. Companies love to hear that you’re
good at C++, C, Visual Basic and UNIX as
well. Many firms hire Java developers for both
Internet and intranet applications. Some
knowledge of Database management can be
a huge plus here.

Before applying for a particular job, it’s a
good idea to think about whether or not you
will relocate. Some software-orientated posi-
tions require a good deal of moving around.
One friend of mine had to move from San
Antonio to Houston to New Orleans and then
to Los Angeles inside of two years. Although
the position paid extremely well, he left the
job so he could put down some solid roots.
Some companies operate from one city, but
send their employees on assignments all over
the country. If you’re going to take a position
like that make sure you can handle the jet lag.

If you’re seeking full-time employment
with a company, why not look on the Inter-
net? There are several good Web sites to get
you started. One of my favorites is the Mon-
ster Board. The Monster Board offers an
updated, indexed listing of hundreds of great
jobs. You can search for the job you want
either by location, category or entering a key-
word. Using their search engine, I was able to
find openings for software development in
dozens of disciplines, and in all corners of the
country. Openings can be applied for imme-

Many online placement services provide access to updated, open Java positions

Sand, Sun, Surf!!! Earn up to 85k

11VOLUME: 3 ISSUE: 7 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Ad

12 • VOLUME: 3 ISSUE: 7Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Low coupling means that the interfaces
between objects are small, few and without
side effects (e.g., no global variables). The
fewer interfaces an object uses, the fewer
dependencies it has. Code changes and re-
arrangements affect a smaller portion of
the total system. You can therefore make
such changes faster and safer.

Such modular design also facilitates the
rapid growth of a startup. When interfaces
to small objects are well defined, you can
easily assign well-bounded tasks to new
employees. Also, since smaller modules
are less complex, new employees can learn
and understand their tasks by focusing on
the relevant object. As they work on more
and more objects over time, they will
develop a broader understanding of the
system. They can also be productive while
climbing the learning curve. If you have
few monolithic modules, however, new
employees have to work inside such a
module with no clearly defined interfaces
between their work and that done by other
developers. Not only is this an error-prone
environment, it will also increase the com-
munication overhead among employees.
Unit-testing or at least a code review is eas-
ier with a small module.

Several methodologies are appropriate
for high-level design. They usually involve
drawing bubbles (objects) connected by
arrows (messages) on paper. All of the
methodologies are quite effective and help
you see the system as a whole. If you are
using Java to implement the software, you
can use the actual implementation lan-
guage rather than pseudo code to do your
low-level design. Use interfaces for specify-
ing APIs so that classes that implement
those APIs can be written later. Object defi-
nitions can be specified as abstract classes,
which can then be subclassed and filled in
with specific implementation details.

The Implementation
Implementation of the design should be

one of the smallest tasks in software devel-
opment. If requirements analysis and
design have been done thoroughly, you will
simply fill in the blanks during implementa-
tion. You should create proper source code
documentation, check return values and
follow a suitable coding and error-handling
standard. Such standards should be
defined before implementation ever starts.
Java’s exceptions provide a good founda-
tion for implementing error-handling, but
they do not define a complete error-han-
dling standard.

JDJ COVER STORY

diately, or you can post your “elec-
tronic resume.” Give the Monster
Board a try at www.monster-
board.com.

Another good site I’ve stumbled
upon is JVsearch. This is a search
engine linked to an extensive data-
base of Java professionals who are
looking for work, and employers
who are seeking the expertise of
the Java developer. JV also allows
the submission of electronic
resumes. They can be accessed at
www.jvsearch.com.

Working as an Independent
Contractor

If you’re like me, you’ve had it up
to here with the “corporate grind.”
Office politics, traffic jams and fear of “down-
sizing” have driven thousands of working pro-
fessionals out of the cubicle and into the
ranks of the self-employed. Although it
seemed a little frightening at first, today’s Java
market offers fairlygood opportunities to
those who know how to find them.

Getting started as a contractor can be a bit
tricky at first. I was able to find some work
from a small ISP in my area. He was later
helpful by recommending me to a few of his
clients who were looking to develop some
Java applications. They tossed my name
around, and before I knew it things began to
snowball. Things don’t always go that well,
however. I’ve known a few people who had
some good-looking accounts set up for
themselves only to have it all fall through.
Before long they were back to the grind.

If you still think you want to give the won-
derful world of independent contracting a try,
here are a few pointers you may want to
remember:
• Be careful not to over/under charge for

your services. No one in their right mind
is going to pay a thousand dollars an hour
for someone who obviously isn’t that high-
ly skilled. By the same token, if you consis-
tently charge too little, you may become
stereotyped as a “nickel and dime” guy. I’ve
noticed that after this happens it is very dif-
ficult to charge more for your work. Rather
than pay you more, some companies or
clients will go after some one else. I’ve
worked for as little as $50.00 an hour and
for as much as $500.00 an hour. Try to esti-
mate what the going market rate is for
what you’re doing. For example, if you’re
doing some work that involves C++, obvi-
ously going the charge will be considerably

more than if you’re just doing an applet for
a basic Web page. If you’re going to be
doing some UNIX work, that should be at
least another 10-25% more.

• Take everything into consideration
when charging clients. When I was just
starting out I did a couple of foolish things.
One mistake was forgetting that I no longer
had health insurance included in my
wages. I thought I was making a killing, but
I woke up after I caught a nasty flu. Not
only did I have to dig deep into my own
pocket for the doctor and a prescription,
but it then dawned on me that I was going
to have to purchase a health plan of my
own. You might want to keep this in mind
when deciding what to charge. Another
big boo-boo was not putting cash aside at
the end of the year for good old Uncle Sam.
It’s very difficult at first to try and anticipate
what your taxes might be, but try to put
some cash away for it. You don’t want to
end up owing an entire year of taxes to the
IRS. Take my word on that!

• Get the word out! The best contract work
comes from word-of-mouth advertising.
The best way to ensure this is to deliver
speedy, efficient results while maintaining
a good relationship with the client. Post
your qualifications all over the Internet, as
well as newspapers and trade magazines. If
you do good work, offers may start coming
to you rather than your having to look for
them.

The explosion of Java as a sought-after
development language has created opportu-
nities that only a few years ago we could not
even fathom. Don’t be afraid! Grab your surf-
board! Ride this wave into the new millenium!

JavaDevelopersJournal.com offers a “Java Jobs” link
to Careercast’s online job search engine

13VOLUME: 3 ISSUE: 7 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Ad

The error-handling standard determines
how user errors, program exceptions (for
example, I/O errors) and internal system
errors are handled. Setting a standard once
will save developers from having to make
these decisions again and again, in a possi-
bly inconsistent way.

Standards will make life easier not only
for new employees, but also for those who
do maintenance. Reviews can be used to
test for compliance with the standards.

Testing
Testing does not start only when coding

is complete. Analysis and design docu-
ments can be tested through reviews. In a
review, check that all requirements have

been addressed. In general, reviews are an
important part of testing at all stages. Dur-
ing implementation they can even substi-
tute for more resource-intensive kinds of
testing, such as unit testing. Once you have

finished coding subcomponents or the
whole system, run automated test cases.
You can start designing the test cases as
early as the analysis stage.

Convincing People
SE techniques are effective only if they

are used. Unfortunately, many developers
and managers resist SE practices. This is
not so much an engineering issue as it is a
psychological and organizational one.

Many individuals who are attracted to
startups have had bad experiences with the
design-by-committee style of SE practiced
in large companies. They come to startups
because they don’t want to deal with
bureaucratic overhead. When you suggest
SE practices to these individuals, the
answer will often be, "Sure, we need some
SE, but I’ve seen how much overhead it
requires. We don't have time for that
now...." The practices discussed here, how-
ever, don’t require much overhead.

These practices do help you build a
quality product that is easier to maintain
and grow as the company grows and as
markets change. Less time will be spent on
debugging and fire drills. This is important
for everyone who wishes to have a life out-
side the company. The higher quality of
your product and the responsiveness of
your company will result in satisfied cus-
tomers, good press, and higher sales. This
will keep everyone motivated, and the
value of your stock options will increase.
Since money is already a point of motiva-
tion, it can be used to convince dubious
developers or management.

As an early member of a new company,
you have both the opportunity and the
obligation to shape its culture. You need to
create an environment in which SE is prac-
ticed naturally. New employees, immersed
in this environment, will adopt SE without
even questioning its application. Rather
than forcing your point on people, guide
them toward seeing that SE can be a pow-
erful solution for the software development
problems encountered in startups.

This brief overview of how to use SE in
startup companies will be followed in
upcoming issues by details on how SE prac-
tices make the software development
process more efficient in startups.

About the Author
Juergen Brendel is a software architect at
Resonate Inc. He welcomes your feedback
via e-mail at jbrendel@resonate.com.

14 • VOLUME: 3 ISSUE: 7Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

jbrendel@resonate.com

JDJ COVER STORY

How to Win Friends,
Influence People and
Make a lot of Money
— the Java Way
by Sean Rhody

In medieval times alchemists searched for
the philosopher’s stone, the secret to convert-
ing lead into gold. Fortunately, our search to
convert code into cash is slightly easier. The
focus of this month’s issue is on making
money – a great deal of money, we hope –
with Java. I won’t pretend to know the exact
path to wealth and fame, but I have a few sug-
gestions about how to be successful with Java.

One of the easiest ways is to get to know
the language really well. This sounds simplistic,
but it isn’t. Until you know the full capabilities
of a language, you can’t really gauge where and
when it is appropriate to use it or what tools to
use it with. That’s important knowledge. Most
companies today are wrestling with two impor-
tant information technology issues – Year 2000
and the shift to an Internet paradigm.

I’ll just pray that Java is Y2K-compliant. In
the meantime, we’ve got a host of companies
out there who are wrestling with the conver-
sion from client/server to Internet, or even
from host-based systems to the Internet. Most
of these companies have heard that Java is the
way to go, but in truth there are a number of
options, depending on business needs. If
you’re a corporate developer who wants to
use Java, you need to know how to highlight
its suitability to this task. If you’re a consultant

who has just recommended Java, you need to
be able to defend your recommendations
against other solutions, such as DHTML, ASP or
XML. If you don’t understand the language and
its capabilities, you’ll have a difficult task.

Another thing that can drive your salary up
is understanding and applying a robust
methodology. Using a modeling tool is not
enough. A tool just makes it easier to create
garbage faster. Without a methodology that
covers the details of how you will partition
your application, you’re bound to make costly
mistakes. You add tremendous value to your
company or client by knowing how to design
the application, not just how to build it. And
that’s bound to add to your own bottom line.

Another tenet of success is “Buy, Partner,
Build,” in just that order. Java was designed to
be a language that enables code reuse and
extension. You shouldn’t be out trying to
build a data-bound grid control – there are
too many out there already. Buy one. If the
tool or widget you are looking for is not quite
what you want, try to partner with the devel-
oper to extend the tool. Build it only when
you have no choice. This philosophy helps
you concentrate on the logic that differenti-
ates your particular client or employer’s busi-
ness from its competitors – and that’s the
best way to add business value. Most of us
should be tool users, not tool builders. A
good tool user can find the right tool for the
job and concentrate on the business at hand.

We’ve seen tremendous growth in
demand for Java in the past few years, and as
more and more products begin to adopt Java
as a part of their environment (e.g., Java-
based stored procedures in relational data-
bases), that trend is likely to continue. Java
can be your philosopher’s stone. If you know
how to use it well, it can turn your lead into
gold. Otherwise, all you’ve got is a rock.

How to Win Friends,
Influence People and
Make a lot of Money
— the Java Way

“Since money is
already a point of
motivation, it can be
used to convince
dubious developers
or management.”

15VOLUME: 3 ISSUE: 7 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Ad

16 • VOLUME: 3 ISSUE: 7Java DEVELOPER’S Journal

Java Electronic
Commerce Framework

Java Electronic
Commerce Framework

by Mukul Sood

The JECF provides services (application programmer interfaces) on
top of Java for creating payment and financial applications. The current
version (beta release 0.8) provides services such as graphical user inter-
face, secure encrypted database, capability mechanism, access to cryp-
tography, applets and infrastructure for purchasing.

JECF Architecture
JECF has a layered architecture; each layer has predefined responsi-

bilities and uses the services of the layer below it. The layers (see Figure
1) are:
• Merchant Applet layer uses Java applets to present an interface, e.g.,

a shopping mall, store front, etc. These applets do not require a long-
term customer-to-merchant relationship; they are appropriate for
implementing short-term customer relationships such as the shop-
ping experience.

• The Cassette layer implements long-term customer relationships
such as credit cards, home banking and brokerages. A cassette is a jar
archive file that contains resources (commerce beans, graphics, etc.)
and is digitally signed with one or more roles. Each role provides spe-
cific capabilities to the contents of a cassette. Similar to applets, cas-
settes are downloaded from servers to client computers. Unlike
applets, which disappear when users quit their browsers, cassettes
are retained on the customer’s system. Cassettes store information in
a database provided by JECF. They may safely store valuable infor-
mation such as public key certificates and transaction records, since
the entire database is encrypted. Examples of cassettes include SET

JECF is Sun’s Java architecture

for supporting secure electronic

commerce transactions on both

the Internet and within intranets

JDJ FEATURE

17VOLUME: 3 ISSUE: 7 • Java DEVELOPER’S Journal

certificates and protocols, home banking
and credit cards.

• The Java Commerce Package layer imple-
ments the infrastructure needed by the
merchant and the cassette layers. Fea-
tures of this layer include a user inter-
face, an application model, a database
and access to strong cryptography. This
layer consists of three main service lay-
ers.

• The GUI services layer: provides a graph-
ical interface similar to a wallet. The JECF
user interface components consist of
generic widgets, such as panels, scrolling
panels, scroll bars, tree controls, buttons,
labels and so on. The services are provid-
ed through the classes and interfaces in
the package javax.commerce.gui. A JECF
UI (Wallet) consists of a combination of
these widgets and is contained in a UI
Cassette. Creating a new user interface
for a JECF wallet involves creation or
modification of a user interface cassette.

• The Application services layer: can be

used to implement common business
operations such as sales and trading. The
central classes in this layer are JECF, JCM,
OperationContext, OperationThread,
UICContext and WalletContext (package
javax.commerce.base). I’ll revisit these
classes later when I walk through the
JECF application. Before going on to the
security model, I should also mention
some of the interfaces defined in this
layer, namely, Operation, Instrument,
CommerceContext.
Operation is an action, transaction or
unit of work, for example, PurchaseOper-
ation. Instrument facilitates an operation;
a common instrument is a credit card. It
could also be communication protocols,
authentication mechanisms and so on. A
CommerceContext object encapsulates
information relevant to an operation.
This includes what frame to show status
information into, the UIFactory relevant
for the operation, and the methods used
to show a Web document.

• The Foundation services layer: includes
the database classes, access to strong
cryptography, smartcard device access
and various common utility classes such
as Money. The database classes
(javax.commerce.database) provide an
interface to an embedded database,
which is small and lightweight, and pro-
vides a subset of functionality of a rela-
tional database.

JECF Security Model
The Java Sandbox security model sup-

ports trusted applets and untrusted applets,
but not partially trusted applets. Commer-
cial entities (e.g., businesses, trading hous-
es, banks) operate on relationships, that
have defined limited trust among them-
selves. To get around the restrictions of the
sandbox model, JECF provides the Gateway
security model which supplies the means to
implement contractual trust relationships.
This model uses the safety features of the
Java language as well as the infrastructure of
the Java Sandbox security model. It also pro-
vides the ability for developers to create
arbitrary trust relationships.

The two main concepts in the Gateway
model are Principals and Roles, and Capabil-
ities. A Principal can be a person, a bank, an
application program. A Role represents a
right (admin, user...) and is used in the Gate-
way model to authenticate Tickets in a Gate.
“Role” is basically a container for a public
key. The Role interface, defined in the pack-
age javax.commerce.cassette, could be
implemented in different ways depending on
the source of the public key. The Ticket is a
use-once authentication token used by a
Gate. The class Ticket defines a method
stampTicket (Role role) that checks that the

ticket for the role is verified by the public
key. The Capabilities model has four compo-
nents: the client code, the gate, a credential
checker and the capability object. The client
code passes a token (this is of class Ticket)
to the gate, which authenticates the client
using the role and returns a capability
object, also referred to as a Permit. (See List-
ing 1 to view the Permit User side code. List-
ing 2 shows the Gate side code.)

The gate is implemented using a pattern
called a Gate, which is a specialized form of
factory pattern method [GHJV 95].

The permit is based on a delegate pattern
(see Design Patterns [GHJV 95]). It forwards
calls to the actual implementation object.
Both the permits and implementation are in
the same package. The implementation,
however, has only package private construc-
tors. The permit objects need to be obtained
by the client code to be useful.

The interface javax.commerce.base.Wal-
letGate specifies methods for obtaining
access to Wallet and Cassette Permits. The
method getWalletUserPermit(Ticket tix)
returns a WalletUserPermit if the ticket was
created for a Role W_USER. The method get-
WalletAdminPermit(Ticket tix) returns a
WalletAdminPermit if the ticket was created
for a Role W_OWNER.

The interface javax.commerce.data-
base.WalletUserPermit specifies methods
for opening selected databases in OWNER or
USER Roles. The method openData-
baseUserPermit(Ticket tix, String location,
String dbName, String password, boolean
makeBackup) returns a DatabaseUserPermit
if tix was created for a role DATABASE_USER.

This should give you a good overview of
the Gateway model. The purpose here is not
to delve deeply into the internal mecha-
nisms, but to give an idea of the main con-
cepts involved and needed for this model.

I’ve mentioned Commerce beans previ-
ously in this article; let’s take a quick look at
what they are.

Commerce Beans
A commerce bean is a reusable com-

merce component that meets specific inter-
face requirements. A commerce bean can be:
• An operation (purchase, ATM transfer,

financial planning)
• A protocol (post, SET, Mondex...)
• An instrument (a credit card, a coupon, a

voucher...)
• A service (account management, cassette

management...)
• A preference (user preference configura-

tion)

Commerce beans are contained within
cassettes. When a cassette is installed, the
JECF can make use of the commerce bean(s)
it contains in order to perform commerce

18 • VOLUME: 3 ISSUE: 7Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

operations. For example, the JECF could use
a purchase operation bean in conjunction
with an instrument and protocol bean to
perform an online purchase. Currently, com-
merce beans do not meet the JavaBean inter-
face requirements; JavaSoft plans to bring
them in conformance in a future release.

At this stage we’ve covered most of the
concepts in JECF, but how do the various
layers communicate with each other, i.e.,
what is the format for communication
between servers, commerce beans and Wal-
letUI?

The format is JCM, and I’ll cover that in
detail, as it is ubiquitous in JECF.

Java Commerce Messages (JCM)
JCM is a format for communication

between Web servers and JECF and within
the JECF. Communication in the JECF takes
place between servers and JECF, between
JECF and commerce beans, between com-
merce beans themselves and between com-
merce beans and the Java Wallet UI. JCMs
supply the JECF with the information neces-
sary to execute JECF operations. The JECF
needs to know what operation the server is
requesting. The operation bean might need
to know what kind of instruments could be
used for a particular operation, or which
protocols it can use in conjunction with an
instrument. On top of this, a user can select
between different instruments accepted on a
site. All of this information is communicated
via JCM.

Structure of JCM
The JCM format is the language of opera-

tions within the JECF; a JCM is a list of name
value pairs that describes some kind of
transaction. Listing 3 shows part of a pur-
chase JCM code.

The field operation=purchase in Figure 2
causes the JECF to look for a commerce
bean that contains the purchase operation.

The field offer indicates that both of
these items are presented as part of a single
offer that expires 02/27/98 and bears id num-
ber

The lineItem fields describe individual
items that are part of the offer.

A JCM is parsed by the JECF in the form
of a labeled tree. Each branch has a name or
number. Each leaf has a value named by the
path from trunk to leaf. For each value a
branch is created. Figure 3 shows a parsed
JCM.

A JCM is organized into this structure by
the JCM parser in the JECF. For example, if a
transaction in the JECF is a purchase opera-
tion, then the JCM is sent to the purchase
bean. The purchase bean (operation bean)
contains a JCM parser, which reads the JCM
as a tree.

Operation, Protocol, Instrument
The key field in any JCM is the operation

= field. This field dictates what other fields
are required in a JCM. In many cases an
operation requires that the JECF use instru-
ments and protocols to carry out the opera-
tion. These instruments and protocols also
dictate, farther down the tree, what fields
are required in a JCM. When instruments
and protocols are required, the valid field
must be present followed by a subfield of
either instruments or protocols:

valid.instruments = VISA

Dependencies for a given operation are
identified through the requires field.

requires.cassette = buy
requires.protocol = Mondex
requires.instrument = VISA

This field is the complement of the valid
field, which establishes the instruments that
will be accepted on a site. The requires field
establishes the cassettes the user must have
installed to complete the transaction.

JCM Delivery
Servers that intend to send JCMs and

browsers that intend to receive JCMs must,
respectively, send and receive the appropri-
ate MIME type header in order to open the
necessary JCM handler. With respect to JECF,
the handler is the Java WalletUI. The MIME
type for a JCM is application/x-java-com-
merce. The file extension for JCM is .jcm.

Any Web site, Web server or application
that is intended for use with the JECF must
be capable of generating JCMs. JCMs can be
generated in a number of ways, either stati-
cally (html hyperlink references a .jcm file
embedded in a Web page) or dynamically
(cgi scripts, applets and servelets).

Figure 1: The purchase JCM as nested subdocuments����������
����������
����������
����������
����������
����������
����������

yyyyyyyyyy
yyyyyyyyyy
yyyyyyyyyy
yyyyyyyyyy
yyyyyyyyyy
yyyyyyyyyy
yyyyyyyyyy

���������
���������
yyyyyyyyy
yyyyyyyyy

���������
���������
���������

yyyyyyyyy
yyyyyyyyy
yyyyyyyyy

offer

1

2

expires 02/27/98
order ID UOT954
lineItem

unitPrice 89.15
description Java Book
quantity 2

unitPrice 20.69
description Calendar
quantity 1

Figure 2: The layers in JECF����������
����������
����������
����������
����������
����������
����������

yyyyyyyyyy
yyyyyyyyyy
yyyyyyyyyy
yyyyyyyyyy
yyyyyyyyyy
yyyyyyyyyy
yyyyyyyyyy

Merchant Applet Layer

Java Environment (in a browser or other environment)

Java Commerce Package

SET Smartcard Echeck Broker

19VOLUME: 3 ISSUE: 7 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

20 • VOLUME: 3 ISSUE: 7Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Walk Through a JECF Application
Let’s walk through what happens when a

shopper makes a purchase from an online
store. We assume both the server and the
client browser are configured to handle JCMs.

We’ll examine the interaction between a
merchant server, The Online Computer
Store, and a shopper, “Billy,” who has a Web
browser and a system configured with JECF,
and is looking for a new computer. Billy vis-
its the Online Store’s Web site, which pre-
sents him with the various models offered.
Each model has an image and a hyperlink
that, when selected, loads a .jcm file. Listing
4 shows the .jcm file.

When Billy selects a link, the server
sends a MIME header Billy’s browser
receives the MIME type .jcm, finds the han-
dler (the Java Wallet), and invokes the han-
dler by passing in the JCM. The JECF starts
an operation thread and passes the JCM to
this thread. This happens through a call to
the method JECF.startOperation (JCM,
AppletContext, TransactionListener). This
call creates an instance of class Opera-
tionThread and invokes its run method. The
operation thread performs a series of look-
ups. It looks into the JCM for the operation =
field. It then looks in the JECF database for
the operation cassette. If the database does-
n’t contain the cassette, then the thread
checks the requires and locator fields in the
JCM to see what cassette is required and
where on the Web it can be found.

Let’s say, in our case, the thread finds the
operation cassette in the JECF database.
Next, an instance of WalletCContext is creat-
ed which holds context for that wallet. The
thread then creates an instance of UICCon-
text, passing it the WalletCContext, and then
instantiates OperationCContext, passing it
the UICContext. OperationCContext carries
context relevant to that operation. It then
instantiates the operation, passing it the
OperationCContext object, and sets the JCM
for this operation.

Next, the operation gets the UIFactory
value from its context. If it’s set to some pre-
ferred value, a check is made on all installed
UI cassettes to see if any of them provide
those services. If not found, JECF sets the
UIFactory to DefaultUI and looks for a user
interface associated with this operation. In
this case the purchase operation has a Ser-
viceUI consisting of a panel with an image
inside it. The purchase operation imple-
ments Operation interface and ServiceUI
interface. When the purchase operation was
installed on Billy’s computer, the method
boolean canUseOperation(Operation op)
was invoked on the installed WalletUI. This
method checks the interfaces of the Opera-
tion and returns true if it can accommodate
the Operation’s UI requirements. In this case
it returned a true value. The method addOp-

eration(Operation op) was, subsequently,
called, which in turn called addSelector(Ser-
viceUI service). A resulting Selector Button
was added to WalletUI, which, when clicked,
shows the image panel.

The operation first makes a secure call
into the Wallet to ascertain what instru-
ments and protocols are accepted by the
merchant site. The JECF takes the valid
instruments and protocols listed in the JCM
and compares them with the instruments
and protocols registered in Billy’s JECF data-
base. The valid.instruments field in the JCM
lists Mondex Card and Visa Cash. Billy’s
database contains Mondex card and Visa
card. The same process takes place for pro-
tocols. The valid protocols on site are Mon-
dex and Visa Cash. Billy’s database contains
Visa Cash, Post and Mondex.

Billy’s wallet now appears on his
screen. It shows a Pay button on the right
side, and the instruments appear on the
middle top of the screen. The protocols
appear below the instruments, and the
ServiceUI panel appears on the left side of
the screen.

Billy selects the icon for Visa Card
(instrument), chooses Mondex for protocol
and then selects Pay in the WalletUI. The
JECF gives the instrument to the protocol
along with the portion of the JCM relevant to
the protocol. In this example the Mondex
protocol sends Billy’s Visa information to
the value acquirer. The amount of the pur-
chase is deducted from Billy’s card and
placed in the Online Store’s account. If
everything works, the electronic receipt in
Billy’s Wallet UI is stamped PAID and he can
dismiss the Wallet or continue shopping. If
an applet sent the JCM, the applet is notified
that the transaction is complete. Control is
not returned to the caller until the user clos-
es the Wallet or dismisses the purchase

operation before completion.
Electronic commerce has its unique chal-

lenges, one of them the need to interoperate
with a plethora of technologies, protocols
and applications. JECF solves some of these
problems through its concepts of cassettes.
Since it’s Java-based, a JECF-based applica-
tion is portable (a significant benefit). With
the diverse services that JECF provides, cou-
pled with Java’s strength as a portable,
object-oriented, multithreaded and well-suit-
ed for Internet-based applications, this plat-
form from JavaSoft will form the basis for the
next wave of electronic commerce products,
applications and frameworks.

Acknowledgements
JavaSoft Web site was the source of informa-
tion on the JCM, Security Model and Archi-
tecture Layers.

References
The JavaSoft Web site, www.javasoft.com/
products/commerce has the latest infor-
mation on JECF, the class api documenta-
tion, papers on jcm, security model, Walle-
tUIs and links to related sites.

About the Author
Mukul Sood is a systems architect with an
e-commerce consulting firm. He has over
six years of experience in designing and
architecting 3-tier and n-tier applications.
Currently he is working on a business-to-
business e-commerce solution for a big
computer retail chain. He can be reached
at mukuls@digitalfocus.com.

Figure 3: The process involved in a purchase operation����������
����������
����������
����������
����������
����������
����������
����������

yyyyyyyyyy
yyyyyyyyyy
yyyyyyyyyy
yyyyyyyyyy
yyyyyyyyyy
yyyyyyyyyy
yyyyyyyyyy
yyyyyyyyyy

Shopper selects
PAY on a
shopping site

Merchant server
generates JCM

JCM sent
to JECF

JECF parses JCM

Some JCM
info sent
to UI

Wallet UI
invoked

JCM sent to Purchase
Operation Bean

Purchase
Operation parses
JCM

Some info sent to

Operation
downloads a
required
instrument

mukuls@digitalfocus.com

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

21VOLUME: 3 ISSUE: 7 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

mukuls@digitalfocus.com

Ad

▼

22 • VOLUME: 3 ISSUE: 7Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Come, friends, family and passersby, wel-
come to the start of a new column, from the
good old keyboard of Alan Williamson.
Some of you may have read my previous col-
umn under the banner name of ‘Visual Cafê.’
That column looked at various aspects of the
Java language, including such goodies as
POP and SMTP. This column is going to be
somewhat different. I intend to strip away all
of the media hype and marketing stories sur-
rounding Java, and present you with a
monthly look at the real Java: Java at the
frontline. We will look at the problems facing
developers on a daily basis: things like play-
ing around with classpath’s, shipping releas-
es to other platforms and database drivers. If
any of you have particular problems you
have come across and successfully resolved,
and you feel would be worth sharing, please
e-mail me. Or even if you haven’t solved them
yet, e-mail me anyway. I am always interested
in hearing about other people’s
problems…there is a strange comfort to be
had knowing others are suffering equally as
much!

Before we go ahead into our first subject,
let me take the opportunity here to thank
Dolly Parton. While the Managing Editor and
myself where thrashing out the idea for this
column we came up with several names for it;
we eventually agreed on “Straight Talking,”
meaning to tell it like it is. A few days later, I
remembered that dear Miss Parton took the
lead role in a movie of the same name. In the
movie, if memory serves me right, she was a
radio deejay answering listener’s problems.
So you can think of me as your new Java-Dolly
ready to tackle the problems others dare not
address. With that, I think I have now profes-
sionally peaked! Miss Parton, I salute you.

On that note, on to this month’s
address: trust.

Trust is a marvelous thing. It is the one
thing that makes living that much easier. In
order to survive, we trust things will work.
When we pick up the phone, we trust it will
have a dial tone. When we get into our car,
we trust it will start. When we develop code,
we trust it will work (well, I know some pray
as well, but theology is beyond the scope of

this article). The point is the majority of us
take the approach that if something isn’t
working quite right it must be our fault, and
we must have missed something. It is per-
fectly natural to do this, especially if you’re
new to the language.

But I will let you in on a wee secret…Java
has one or two bugs! Well to be precise, Java
is harboring at least 5000 bugs. At least! To be
honest, it’s expected. Let’s take a quick look
at the history of Java. It was first released
approximately 3 years ago with a handfull of
classes, compared to the 1000 odd classes
that are proposed in the new JDK1.2 specifi-
cation. This is a phenomenal growth rate. So,
some teething problems are to be expected.
But should we tolerate them? If it where any
other company, then the answer would be
no; but, credit where credit is due, Sun is
making the effort (looking past the fact that
they created the problem in the first place
with their eagerness in having Java become
accepted in the mainstream development).

Let me illustrate this with a simple prob-
lem that had one of our engineers here at N-
ARY tearing his hair out for several days.
Lawrence had spent some time developing a
complete servlet database solution, using
HTML. This servlet hooked into an MS-
Access database and basically allowed the
insertion and viewing of a database that
evolved around chronological dates and
rooms. For example, a user could book a
room for a given day, say the 9th of Decem-
ber, for 2 hours beginning at 1400 hrs. How-
ever, a problem was discovered at the end of
the procedure when the final booking was e-
mailed to the room coordinator; instead of
the 9th of December, it booked for the day
before, the 8th. A strange error indeed.

The first natural thing to do was to look at
the way the dates where being stored in the
database. In this particular instance we
weren’t actually storing the date but the
number of milliseconds since 1970. This
ensured that no date mangling would have
occurred on the database side. So onto the
next stage of debugging.

Lawrence thought it might have to do
with the servlet processing and the actual

storing of the data. He worked on the
assumption that somewhere in the chain the
day was starting from 0, as opposed to 1. But
again, nothing unusual came up.

Upon closer inspection we discovered
that the problem was one of the classes from
the core JDK. The code snippet shown below
illustrates the formatting function we used.

public static String getDate(long _date){
SimpleDateFormat formatter = new Simple-

DateFormat("HH:mm:ss dd/MM/yy");
formatter.setTimeZone(TimeZone.getDe-

fault());
return formatter.format(new

java.util.Date(_date));
}

The class, SimpleDateFormat, was the
crux of the whole problem. Passing in our
date, it incorrectly formatted the date, drop-
ping a digit from the day value. This was a
very difficult problem to find. Why?

Well, for starters, it is a common to
assume/trust that the core JDK classes actu-
ally do what they say, and therefore you go
off looking for the fault elsewhere. Only after
a comical comment was made about the
class was it investigated further, and sure
enough it caught the culprit.

But is this an isolated case? Well, I am not
going to advocate that you suddenly assume
the JDK is wrong every time your class does-
n’t behave itself. The chances that a problem
does exist with the core classes is rare. That
said, a little known resource is available with-
in the main Java Web site called the “Bug
Parade.” This forms part of the Java Develop-
ers Connection (JDC) located at
http://java.sun.com/jdc. This section requires
registration, but the good news is it’s free.

This is the main area where bugs are sub-
mitted, and their present status can be
viewed. For example, the particular bug num-
ber for the problem that we discovered is
4040985. The status for this bug can be
viewed by directly entering the number and
searching. If you do this you will see it has
indeed been fixed, and has been updated in
the 1.1.4 release of JDK. This information is
particularly useful if you’re experiencing
problems and are unsure if upgrading your
virtual machine will make any difference.

As a side point, when you install your new

Java at Fault?…Surely Not!
Assumptions and trust

STRAIGHT TALKING

by Alan Williamson

23VOLUME: 3 ISSUE: 7 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

JDK version, remember to have a quick scan
over the “changes” file that is deposited in
the route directory of the installation. This
file is often overlooked but contains all the
bug fixes that this release promises to fix. So
keep an eye out for it.

So what should you do if you believe a
problem does indeed exist? First of all, you
should check to see if you’re the first one to
have experienced the problem. You can do
this by first posting a question on the Java
Usenet group, comp.lang.java.programmer.
You might even find me lurking around there.
Generally somebody will have experienced
something similar. If not, then go to the JDC
and extensively search the bug database to
see if your problem is the same as or similar
to an existing bug.

If you find a similar one, then add your
experience to the bottom of it (assuming it
hasn’t already been fixed in a later release).
The more help you can give the engineers
the quicker the problem can be reproduced,
and hopefully rectified.

If however you discover that no one else
has had a similar experience, then fill out a
new bug form. It will ask you a series of ques-
tions, and ask you to describe the nature of
the problem in as much depth as possible.
This is an extremely important step. Give
them as much information as possible. But
before you do, make sure you can repeat the
bug yourself. If you can’t repeat it then the
chances of an engineer repeating it are slim.
Also, include sample code where necessary.

One of the more interesting aspects of the
bug parade is the ability to vote for bugs. I
am not convinced of the value of this con-
cept. Basically, you can vote for the bugs that
you would like fixed first. This is meant to be
a general guide for the engineers at Sun to
determine which bugs are causing the most
grief. So it’s important to check for the exis-
tence of the bug before posting a new one. It
is better to have 1 bug with 10 votes, than to
have to 2 bugs that are the same with 5 votes.

Conceptually it’s a great idea; let the users
decide which bugs are annoying them the
most. But the system fails for the bugs that
only a few people discover. These are placed
last on the list of priorities and it may be sev-
eral releases later that they are addressed.
Sun indicates that they only use the votes as
a general guide, and they don’t always fix the
ones with the most votes first. I am not so
sure. But that said, there have been a good
amount of bugs highlighted and fixed.

It’s an interesting approach to take: having
nearly all of the Java community become
your beta testers, and reporting back their
problems and experiences. It’s a bold maneu-
ver that appears to be working. However,
Java still has a lot of problems that need
attention before we see it controlling medical
equipment. But I think I would prefer to take

my chances with a Java controlled heart mon-
itor as oppose to a Microsoft NT solution.

Sun has a completely different approach to
their developer community than say the likes
of Microsoft. When we here at N-ARY had dis-
covered a problem with the JDK we sent an
email to Sun indicating our concern. They
acted fantastically. They took our problem
and worked with us to a successful conclu-
sion. We can’t ask for much more than that.

So the moral of the story? Don’t believe
everything you read on the computer screen.
If a problem is still persisting and you’ve
exhausted all avenues, then take a look at the
classes your utilizing. Don’t assume/trust
that just because they are part of the core

JDK that they work. Sometimes they don’t.
Don’t be afraid to challenge the classes. Ask
around, see if anyone else has experienced
the problems. You may be surprised.

About the Author
Alan Williamson is on the board of directors at N-ARY
Limited, a UK based Java software company specializ-
ing solely in JDBC and Java Servlets. He has recently
completed his second book, focusing purely on Java
Servlets. His first book looks at using
Java/JDBC/Servlets to provide an efficient database
solution. He can be reached at alan@n-ary.com. He
welcomes all suggestions and comments.

Bristol
1/2 Ad

alan@n-ary.com

24 • VOLUME: 3 ISSUE: 7Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Corporate intranets are heterogeneous
environments comprised of Web servers and
search engines from numerous vendors. In
such a disparate environment, how do you
create a corporate collection of indexed doc-
uments for use by a single search facility? One
method is to use a catalog or index server,
such as Netscape’s Compass Server or
Microsoft’s Index Server. These products
employ robots or agents that build collections
of indexed documents by crawling through
your company’s intranet via URLs. While this
method is very effective, it requires careful
planning and administration. An alternate
method is to write a Java servlet that con-
nects to several search engines, compiling the
results into a single document.

What Is a Java Servlet?
The Java servlet API was developed by Sun

Microsystems to provide a mechanism for
implementing Web server-side logic using the
Java programming language. Java servlets are
similar to CGI (Common Gateway Interface)
programs in that they provide an HTTP-based
mechanism for receiving user input and pro-
ducing output in the form of HTML. Servlets
offer a significant performance boost over CGI
programs due to their architecture and imple-
mentation. CGI programs require the creation
of a separate process to handle each client
request. This approach consumes a signifi-
cant amount of system resources and pro-
cessing time for each client connection. Web
servers implement the Java servlet specifica-
tion load and instantiate any registered Java
servlets upon start-up. Client HTTP requests
are handled by creating a new thread within
the Server’s process space. Thus, servlets
perform as if they were developed with native
interface APIs such as NSAPI (Netscape Web
Server) or ISAPI (Microsoft Web Server). Java
servlets can be created easily by sub-classing
the HttpServlet (javax.servlet.http.

HttpServlet) class and overriding one of the
HTTP processing methods.

The Java servlet architecture can be used
to enhance the performance of database
applications by implementing database con-
nection pools. In traditional Web-based data-
base applications, the overhead of connecting
to a database is incurred during each client
request. Servlets that implement database
connection pools create a collection of instan-
tiated database connection objects during
servlet initialization. Therefore, the time
required to create the objects and initialize
the connections is incurred before any client
HTTP requests are handled. Subsequent
HTTP client requests are assigned one of the
pooled database connection objects, reducing
the required processing time. The size of the
pool is set to the number of anticipated con-
current users. If that number exceeds the pre-
determined threshold, a new connection

object is instantiated and added to the pool.

Architecture Overview
The search servlet combines the output

from registered search engines by coordinat-
ing multiple threads that work in tandem to
create a consolidated list of search results.
This multithreaded approach increases the
overall performance of the application by
allowing the search engines to run concur-
rently. Each engine in the integrated search is
registered via a URL entry in a configuration
file (see Figure 1). The servlet strips the
results from each search engine, ensuring that
the most relevant results appear at the top of
the final document (see Figure 2). To achieve
a consistent look and feel across diverse
search engine results, the output from each
search engine is parsed to extract the HTML
anchor tags. An HTML template file deter-
mines the final HTML representation of the
results. Using a simple meta tag substitution,
the template file alleviates the need to edit the
servlet’s Java code.

Servlet Design
The search servlet is comprised of three

classes, each encapsulating a specific catego-
ry of functionality into a reusable module. The
HTMLAnchorParser class parses an input
stream which extracts the HTML anchor tags

Create a Distributed
Intranet Search Mechanism

Using Java Servlets
How to glue together Web and legacy systems across
the corporate intranet using CGI-based applications

by Eric Greenfeder

Figure 1: Search servlet architecture

Consolidated Search Results

Search Integration Servlet

Consolidated Search Results

Search Integration Servlet

Anchor (Search Engine 1)
Anchor (Search Engine 1)
Anchor (Search Engine 1)
Anchor (Search Engine 1)
Anchor (Search Engine 1)
Anchor (Search Engine 1)

Anchor 1

Search Results

Search Engine 3

Anchor 1
Anchor 2

Search Results

Search Engine 2

Anchor 1
Anchor 2
Anchor 3

Search Results

Search Engine 1

Result
Relevance
To Search
Criteria

Strong

Weak

Anchor (Search Engine 1)
Anchor (Search Engine 1)
Anchor (Search Engine 1)
Anchor (Search Engine 1)
Anchor (Search Engine 1)
Anchor (Search Engine 1)

Anchor 1Anchor 1
Anchor 2

Anchor 1
Anchor 2
Anchor 3

Result
Relevance
To Search
Criteria

Strong

Weak

JAVA SERVLETS

25VOLUME: 3 ISSUE: 7 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

26 • VOLUME: 3 ISSUE: 7Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

ADVERTISER INDEXADVERTISER INDEX
Accusoft 19
www.accusoft.com 206 329-7460

Bristol Technology 23
www.bristol.com 203 438-6969

Cold Fusion Developer’s Journal 26
www.sys-con.com 914 735-1900

Data Representations 29
www.datarepresentations.com 888 307-9550

Halcyon 35
www.halcyonsoft.com 888 333-8820

IBM 58&59
www.ibm.com 800 426-5900

IEC-EXPO 73
www.iec-expo.com 888 222-8734

ILOG 17
www.ilog.com 415 688-0200

Installshield 13
www.installshield.com 800 374-4353

Inno Val 38
www.innoval.com 914 835-3838

Keo Group 22&37
www.keo.com 978 463-5900

Advertiser Page
KL Group Inc. B/C
www.klg.com 800 663-4723

Live Software 41
info@livesoftware.com 619 643-1919

Net Dynamics 79
www.netdynamics.com 650 462-7600

ObjectShare 43
www.objectshare.com 800 973-4777

Object Matter 50
www.objectmatter.com 305 718-9101

ObjectSpace 4
www.objectspace.com 972 726-4100

Object Management Group 53
www.omg.org 508 820-4300

Progress/Cohn & Godly 21
www.apptivity.com 800 477-6473

ProtoView 3
www.protoview.com 609 655-5000

Roguewave 15
www.roguewave.com 800-487-3217

Sales Vision 47
www.salesvision.com 704 567-9111

Silverstream 83
www.silverstream.com 888 823-9700

Sockem Software 65
www.sockem.com 814 696-3715

Stingray Software Inc. 2
www.stingsoft.com 800 924-4223

SunTest 11
www.suntest.com 415 336-2005

Sybex Books 63
www.sybex.com 510 523-8233

The Object People 23
www.objectpeople.com 919 852-2200

SYS-CON Publications 71
www.sys-con.com 800 513-7111

Thought, Inc. 48
www.thought.com 415 836-9199

Visionary Solutions, Inc. 50
www.visolu.com 215 342-7185

WebMethod 33
www.wbmethods.com 888 831-0808

Zero G. Software 6
www.zerog.com 415 512-7771

Advertiser Page Advertiser Page

Cold Fusion Developer's Journal (CFDJ) is the first and
only print magazine devoted to Cold Fusion, Allaire's
revolutionary Web Application Platform.
Cold Fusion represents a major advance in how to
create powerful dynamic Web applications in a visual
programming environment.

Cold Fusion 3.1 –New Features:
Corey Low

How to Build a Top Notch E-Commerce Application

Using Java forms, Mail,Transaction, HTTP, FTP and Schedule Tags 8

Fine Tuning Data Access in Cold Fusion Michael Green

Dynamic SQL Statements and Stored Procedures

Faster, more intelligent data access in performing database lookups 14

CFML: Cold Fusion Markup Language Steve Benfield

Tips, techniques and tricks in server-side programming
18

Cover Story: The Anatomy of a Startup Scott Davison

An Interview with J.J. and Jeremy Allaire

“Java was our competitors’ worst distraction in Silicon Valley...” 28

HomeSite 3.0 Corner: Web Craftsmanship... David Bell

How to fine-tune your hand-crafted Web site across platforms 36

Extending Cold Fusion with ICVERIFY: Robert Diamond

Exploring the Allaire Tag Gallery

Creating a sample application with tag-based programming 42

SYS-CON
PUBLICATIONS

Visual Programming

Advanced

Programming

with Studio
pg.40

Advanced HTML

How to Use Drop-in

Java Form Controls

by Joe Valley pg.48

Case History

Booz Allen

& Hamilton

Deploys

Cold Fusion Apps

by Bill Williams pg.39

Tips & Techniques

Heavyweight

Components for

Thin Clients

by Brent Master pg.50

Volume:1 Issue:1 November/October 1998

U.S. $6.99 (Canada $7.99)

Cold Fusion News

Allaire Acquires

ICVERIFY

Components for

E-Commerce
pg.45

DYNAMIC WEB APPS
DYNAMIC WEB APPS

From the Publisher

Fuat A. Kircaali pg. 5

The latest addition to the family of
SYS-CON’s technical journals!

Introducing...Introducing...

Subscribe Now!Subscribe Now!
$3999$3999one year - 6 issues

only
one year - 6 issues

only
One of America’s Fastest Growing Companies...

800-513-7111800-513-7111
your charter subscription price

27VOLUME: 3 ISSUE: 7 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

and stores them in an internal data structure.
The SearchEngine class connects to a search
engine via a URL, initiates a search request
and stores the results. It extends HTMLAn-
chorParser to provide parsing functionality
for the search engine results. This class also
implements the java.lang.Runnable interface
to support concurrent processing via threads.
Lastly, the SearchManager class coordinates
all search engine threads and handles the
HTTP requests from the Web Server by
extending the HttpServlet class in the Java
servlet package (javax.servlet.http). The
doGet method is overridden to implement the
necessary HTTP request handling. Figure 3
depicts the class diagram for the servlet
designed using Rational Rose for Java. Ratio-
nal Rose is an object-oriented analysis and
design tool that provides powerful design and
code generation functionality for Java devel-
opment. Designing the system in a modular
fashion such as this promotes reuse and
decreases the time required for development
and testing.

Implementing the Servlet
Listing 1 contains the source code for the

SearchManager class. HTTP GET requests are
handled by overriding the doGet method of
the inherited HttpServlet class. When this
method is invoked, it stores the output stream
from the HttpServletRequest object using the
getOutputStream method. Sending output
back to the client’s browser is simplified by
redirecting System.out and System.err to this
output stream. This is accomplished by invok-
ing the setOut and setErr methods of the Sys-
tem class. Subsequent calls to
System.out.println and System.err.println will
cause the output to be sent to the client’s
browser. The HTTP Response header’s con-
tent type field is set to “text/html” via a call to
the setContentType method. Without this call,
the browser would not know how to interpret
the information being sent back from the
servlet. The search servlet accepts a single
CGI parameter that contains the criteria for
the integrated search. The getParameter
method of the HttpServletRequest class is
used to access this variable by name. In List-

ing 1 you will notice that the
doGet method invokes an initial-
ize method. This method reads
the search engine configuration
file and creates a thread for each
entry. A thread group is used to
monitor the status of the search
engine threads and determine
when they have finished process-
ing. This is implemented using
a busy-wait loop and the
ThreadGroup.activeCount and
Thread.sleep methods. The rest
of the doGet method processes
the HTML template file and out-
puts the search engine results
when the “<<results>>” meta tag
is encountered. The results from
the search engines are stripped
by outputting a single line from
each search engine and removing
the search engine when the
results have been exhausted.

Listing 2 contains the source
code for the HTMLAnchorParser

Listing 1: Search Manager class.
import java.io.*;
import java.util.*;
import java.lang.*;
import javax.servlet.*;
import javax.servlet.http.*;

// THIS CLASS IS USED TO MANAGE THE SearchEngine THREADS
// AND PROVIDE JAVA SERVLET FUNCTIONALITY

public class SearchManager extends HttpServlet {
private ServletOutputStream out; // THE OUTPUTSTREAM BACK TO THE

CLIENT'S BROWSER
private String query=null; // THE QUERY CRITERIA TO USE IN THE

SEARCH
private Vector searchEngines = new Vector(); // A LIST OF

SearchEngine OBJECTS
// A ThreadGroup TO MANAGE THE SearchEngine THREADS
private ThreadGroup threadgroup = new ThreadGroup("searchEngines");

// doGet PROCESSES HTTP GET REQUESTS FROM CLIENT CONNECTIONS
public void doGet (HttpServletRequest req,

HttpServletResponse res)
throws ServletException, IOException {

int cnt = 1,index=0;
String link,inline; // BUFFER VARIABLES
String currenthost=null; // THE HOST NAME OF THE CURRENT

SearchEngine
SearchEngine currentse=null; // CURRENT SearchEngine OBJECT

Figure 2: Search results integration

Search URL

SearchEngine
Java Thread 1

List of
Search
URL’s

Search Criteria

Web Server

Consolidated Search Results

HTML
Template

File

SearchEngine
Java Thread 2

SearchManager
Java Servlet

SearchEngine
Java Thread 3

Search URL Search URL

Figure 3: Search servlet class diagram

28 • VOLUME: 3 ISSUE: 7Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

class, which provides methods for reading
and parsing the HTML anchor tags from a sup-
plied java.io.InputStream object. The ignore-
Anchor method provides a mechanism for
ignoring HTML anchor tags that contain cer-
tain string patterns. This enables the servlet
to ignore irrelevant and/or ornamental anchor
tags that are generated by various search
engines. A call is made to Thread.current-
Thread().yield(), while this class reads data
from the given input stream to yield the CPU
to other competing threads. Without this
method call, a single thread would dominate
the CPU.

The SearchEngine class (see Listing 3)
inherits the HTML anchor parsing capabilities
of the HTMLAnchorParser class while imple-
menting the java.lang.Runnable interface to
provide multithreaded support. This class
creates a URLConnection instance from a
specified URL, passing the associated Input-
Stream to the HTMLAnchorParser.getContent

method to return and store a list of HTML
anchor tags.

The SearchManager strips the output from
the SearchEngine instances using calls to the
getResultItem and removeResultItem meth-
ods. Once a result is read it is removed from
the associated SearchEngine object, making
the next result available for the subsequent
pass. The getResultsCount method is used to
determine whether all the results have been
read from a specific SearchEngine object and
whether it can be ignored in subsequent strip-
ping passes (see Figure 2).

Conclusion
The java.net package provides a feature-

rich set of classes for interfacing and control-
ling HTTP based resources. Coupled with the
Java servlet API, developers can easily create
traditional CGI-based applications that sup-
port socket programming, HTTP handling and
multithreaded capabilities that glue together

Web and legacy systems across the corporate
intranet.

Resources
• Sun Microsystem’s Servlet Tutorial:
http://java.sun.com/products/jdk/1.2/docs/ex
t/servlet/servlet-tutorial.html.
• Sun Microsystem’s “Inside the Java Web
Server:”
http://java.sun.com/features/1997/aug/jws1.h
tml.

About the Author
Eric Greenfeder currently works for the BASF Corpo-
ration as a Senior Internet Architect. He specializes in
Java development, Web security, CORBA and object-
oriented analysis and design. Eric has been program-
ming in Java since 1996 and currently teaches an
internal Java course to BASF developers. You can
reach him by e-mail at greenfe@basf.com.

Enumeration se=null;

// GET THE RESPONE OUTPUT STREAM AND REDIRECT THE out
// AND err OUTPUTSTREAMS TO RETURN RESULTS TO THE CLIENT
// CONNECTIONS
out = res.getOutputStream();

// REDIRECT ERRORS TO THE CLIENT'S BROWSER
System.setErr(new PrintStream(out));

// REDIRECT STANDARD OUTPUT TO THE CLIENT'S BROWSER
System.setOut(new PrintStream(out));

// SET THE RESPONSE CONTENT TO HTML TEXT
res.setContentType("text/html");

// GET THE QUERY PARAMETER
try {

query = req.getParameter("query");
if(query == null || query.length() == 0) {

out.println("<H1 ALIGN=CENTER>Please input a "+
"search string !</H1>\n");

out.println("</BODY></HTML>\n");
out.flush();
return;

}
}
catch (Exception e) {

System.err.println("SearchManager (doGet): "+e);
System.err.flush(); }

// INITIALIZE THE SEARCH ENGINE THREADS
if(!initialize()) return;

try {
// READ THE TEMPLATE USED TO FORMAT THE SEARCH RESULTS
BufferedReader in =

new BufferedReader(new
FileReader(System.getProperty("user.dir")+

"/searchservlet.pat"));
// READ IN THE TEMPLATE FILE UNTIL THE <<results>>
// TAG IS FOUND, THEN WRITE OUT THE RESULTS. LOOP ACCROSS
// EACH SEARCH ENGINE GATHERING THE RESULTS FROM EACH SEARCH
// ENGINE ONE RESULT AT A TIME. THIS WAY THE MORE PERTINENT
// SEARCH RESULTS FROM EACH ENGINE WILL APPEAR AT THE TOP OF
// THE DOCUMENT.
while((inline=in.readLine()) != null) {

if((index=inline.toLowerCase().indexOf("<<results>>")) > -1) {
System.out.println(inline.substring(0,index));

int exhaustedEngines=0;
while(searchEngines.size() > exhaustedEngines) {

exhaustedEngines=0;
// if all the engines have been exhausted then this
// variable will = searchEngines.size()
for(int i=0;i<searchEngines.size();i++) {

currentse = (SearchEngine)searchEngines.elementAt(i);
currenthost = currentse.getHost();
// THIS SEARCH ENGINES RESULTS HAVE BEEN EXHAUSTED
if(currentse.getResultsCount() == 0) {

++exhaustedEngines;
continue;

}
try {

// get the first element
link = currentse.getResultItem(0);
((SearchEngine) searchEngines.elementAt(

searchEngines.indexOf(currentse))).removeResultItem(0);
}
catch (ArrayIndexOutOfBoundsException e) {

++exhaustedEngines;
continue;

}

// WE DO NOT WANT IMAGES AND BLANK ANCHORS
if(link.toLowerCase().indexOf("http://") == -1) {

int idx; // SCRATCH VARIABLE
if((idx = link.toLowerCase().indexOf("href=\"")) > -1) {

if(link.toLowerCase().indexOf("href=\"/") > -1)
link = link.substring(0,idx+6)+currenthost+

link.substring(idx+6);
else

link = link.substring(0,idx+6)+currenthost+"/"+
link.substring(idx+6);

}
else {

idx = link.toLowerCase().indexOf("href=");
if(link.charAt(idx+6) == '/')

link = link.substring(0,idx+5)+currenthost+
link.substring(idx+5);

else
link = link.substring(0,idx+5)+currenthost+"/"+

link.substring(idx+5);
}

}
out.println(String.valueOf(cnt++)+". "+link+"
");

}
}
// PRINT OUT THE REST OF THE LINE AFTER THE

greenfe@basf.com

29VOLUME: 3 ISSUE: 7 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Ad

30 Java DEVELOPER’S Journal • VOLUME: 3 ISSUE: 7 http://www.JavaDevelopersJournal.com

// <<results>> META TAG
System.out.println(inline.substring(index+11));

}
else {

System.out.println(inline);
}

}
} catch (Exception e) { System.err.println("SearchManager (doGet): "+e); }
out.flush();
out.close();

}
/* THIS METHOD INITIALIZES AND RUNS THE SEARCH ENGINES
AND WAITS FOR ALL SEARCH ENGINE THREADS TO COMPLETE.
THE FILE searchurls.conf IS READ FROM THE CURRENT WORKING
DIRECTORY TO PROVIDE A LIST OF SEARCH ENGINE URL'S. THE
URLS LISTED IN THE CONFIGURATION FILE MUST END WITH THE
SEARCH ENGINE'S QUERY PARAMETER FOLLOWED BY AN EQUAL SIGN.
example: www.search.com/cgi-bin/search?query= */

public boolean initialize() {
String inline; // A SCRATCH VARIABLE
String servlet_dir=null; // THE SERVLET HOME DIRECTORY
SearchEngine se=null; // A SearchEngine OBJECT

try {
// GET THE SERVLET HOME DIRECTORY
servlet_dir = System.getProperty("user.dir");

// OPEN AN INPUT STREAM TO THE CONFIGURATION FILE THAT
// LISTS THE URL'S OF THE SEARCH ENGINES TO BE INTEGRATED
BufferedReader in =

new BufferedReader(new FileReader(servlet_dir.replace('\\','/')+
(servlet_dir.charAt(servlet_dir.length()-1) ==
'/'?"searchurls.conf":"/searchurls.conf")));

// INITIALIZE THE LIST OF SEARCH ENGINES

searchEngines.removeAllElements();

// READ IN THE URL'S FROM THE searchurls.conf FILE
while((inline=in.readLine()) != null) {

// CREATE A SEARCH ENGINE INSTANCE USING THE URL
// READ IN FROM THE searchurls.conf FILE AND
// CONCATENATE THE USER SUPPLIED SEARCH CRITERIA
// NOTE: THE URL LISTED IN THE CONFIGURATION FILE
// MUST END WITH THE SEARCH ENGINES QUERY PARAMETER
// FOLLOWED BY AN EQUAL SIGN.
// example: www.search.com/cgi-bin/search?query=

se = new SearchEngine(inline.trim()+query);
se.addIgnoreTag("<img");
se.addIgnoreTag("<IMG");
se.addIgnoreTag(">_<");
searchEngines.addElement(se);
// START THE SEARCH ENGINE THREAD
new Thread(threadgroup,se).start();

}

// WAIT FOR ALL OF THE SEARCH THREADS TO FINISH PROCESSING
while(threadgroup.activeCount() > 0)

Thread.currentThread().sleep(50);

} catch (Exception e) {
System.err.println("initialize: "+e); System.err.flush();
return false; }

return true;
}

}

1/4 Ad 1/4 Ad

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

31VOLUME: 3 ISSUE: 7 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

32 • VOLUME: 3 ISSUE: 7Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

by Maros Cunderlik

JDJ FEATURE

Interfacing
Transaction
CORBA Object Transaction Service

Sun Microsystems’

release of Enterprise

JavaBeans (EJB)

specification is only

one in a series of the

latest signs of Java’s

push into enterprise computing

Part 2

33VOLUME: 3 ISSUE: 7 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Undoubtedly, the support for distributed
transactions is a part of any enterprise sys-
tem. Part One of this series (JDJ, March
1998) explored the X/Open Distributed
Transaction Processing (DTP) Model – a
common model for distributed transaction
processing. We also explained the concepts
of Microsoft Transaction Server (MTS) that
quickly become de facto standard for devel-
oping business components on the Win-
dows platform. We demonstrated how to
write “first-class” MTS COM components in
Java. The described process of creating
these components has been greatly simpli-

fied by the release of Microsoft Visu-
al J++ 6.0.

In this second part we will take a
closer look at CORBA Object Trans-
action Service (OTS). As Java gains
wider acceptance in enterprise com-
puting, we are likely to see a number
of simplified object models and API
layers that will rely on OTS to pro-
vide transaction support (e.g., EJB,
Java Transaction Service, IBM’s San
Francisco Project, etc.). These mod-
els greatly reduce the amount of
code necessary to create applica-
tions with full transaction support.
Nevertheless, as the number of com-
ponents in the system increases, the
complexities of real-world systems
are often encountered. These
include managing object interdepen-
dencies, state and context manage-
ment, and dealing with various hard-
ware and network limitations. To
make the situation worse, the prob-
lems often go undetected until the
deployment time because of insuffi-
cient prototype evaluation and
stress testing. In solving these
issues, an understanding of the
underlying CORBA specification and
implementations is critical. There-
fore, we will describe in this article
the fundamentals of CORBA OTS
specification as defined by Object

Management Group (OMG). We will also
show some details of CORBA OTS commer-
cial implementations and discuss the rela-
tionship between CORBA OTS and EJB.

CORBA Object Transaction Service
Specification

CORBA OTS specification is loosely
based on X/Open DTP Model. The specifi-
cation defines a model that complies with
ACID transaction properties: atomicity,
consistency, isolation and durability. The
specification also describes the set of stan-
dard interfaces and behaviors that define
how a client, the Transaction Service and
the transactional objects participate in
transaction processing. Figure 1 illustrates
the main entities of CORBA OTS.

In simple view, the client starts a trans-
action by contacting the Transaction Ser-
vice. The service creates a transaction con-
text for the new transaction. The client then
makes a series of requests on transactional
and nontransactional objects. The transac-
tional objects that maintain durable data
and state are called recoverable objects.
These objects must register with the Trans-
action Service using a resource object. The
resource object participates in coordinat-
ing a two-phase commit process, and is
used to access the underlying resources

consumed by the
objects. When finished,
the client commits or
rolls back the
changes by instruct-
ing the Transactional
Service to commit or roll
back, respectively. The ser-
vice then coordinates the
two-phase commit process
with all resources registered
within the scope of the current
transaction. Listing 1 shows the defini-
tions of all OTS-defined data types and
interfaces in Interface Definition Language
(IDL).

The CORBA OTS specification defines
two basic approaches to carrying out trans-
action processing. These are based on the
level of involvement in the context manage-
ment and transaction propagation. The
context management refers to the process
of the transaction context creation, initial-
ization and control. In general, the partici-
pants can choose the indirect context man-
agement and rely on the Transaction Ser-
vice to perform all context-related respon-
sibilities. On the other hand, the client can
elect to manage the transaction context
directly by using the set of standard OTS
interfaces. Similarly, when creating transac-
tional objects, the client can use the Trans-
action Service implicit propagation, or
explicitly pass the transaction context to
the objects. Clearly, there are four possible
combinations of how to perform the con-
text management and transaction propaga-
tion:
• Indirect context management and implic-

it propagation
• Indirect context management and explicit

propagation
• Direct context management and implicit

propagation
• Direct context management and explicit

propagation

While all of these combinations are
valid, the ones described in the following
sections are the most common. These two
combinations reflect the fundamental
design tradeoff between ease of use and
flexibility.

Indirect Context Management and
Implicit Transaction Propagation

When using the indirect context man-
agement and the implicit transaction prop-
agation, we rely on the Transaction Service
to perform all context-related responsibili-
ties. This model requires the simplest code
by utilizing a predefined standard pseudo
object Current. The client uses the Current
object to begin, commit or roll back the
transaction. The client also instantiates and

34 • VOLUME: 3 ISSUE: 7Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

uses the recoverable objects as any other
CORBA objects. Upon object creation, the
transaction context is automatically associ-
ated with the server thread by the Transac-
tion Service. The recoverable objects can
be marked as “transactional” at design time
by implementing the TransactionalObject
interface. This interface does not have any
methods -- it simply signals that all of the
object's methods are transactional, and the
service should propagate the transaction
context to the object implicitly. The server
object can also implement the Resource
interface. This indicates that the object is
recoverable and it is capable of participat-
ing in the two-phase commit process.

Figure 2 depicts the typical scenario in
which both the client and the recoverable
object use the Current pseudo objects. The
client starts the transaction by calling Cur-
rent.begin() method. It then performs the
series of operations on the server objects.
When finished, the client issues
Current.commit() or Current.rollback()
commands to commit or roll back the cur-
rent transaction, respectively. On the serv-
er side, the recoverable object retrieves the
Control object by calling Current.get_con-
trol(). The Control object in turn is used to
obtain the Coordinator object. The Coordi-
nator object provides an access to the sin-
gle transaction information such as the
transaction name, transaction status, par-
ent transaction and the propagation con-
text. The recoverable objects use the Coor-
dinator object to register its resources with
the current transaction by calling Coordi-

nator.register_resource(), which returns
the RecoveryCoordinator object. The
resources use this object when recovering
from the failure after being previously pre-
pared. Finally, the recoverable object car-
ries out the client’s request.

At the client’s request, the Transaction
Service commits the changes through the
two-phase commit process with all regis-
tered resources. When the client requests
to commit the transaction, the Coordinator
issues the Resource.prepare() command.
The resources then prepare to commit and
return the Vote object accordingly:
VoteCommit, VoteRollback or VoteReadOn-
ly. The VoteReadOnly indicates that no
changes were made to the underlying per-
sistent data managed by the resource. If all
registered resources voted VoteReadOnly,
the Coordinator informs the client about
the successful commit. If at least one
resource replied VoteCommit and the rest
of the registered resources voted VoteRead-
Only, the Coordinator first saves the cur-
rent transaction information in case of later
failure, and then completes the two-phase
commit process by calling Resource.com-
mit().

Direct Context Management and
Explicit Transaction Propagation

The direct context management allows
the clients to access the transaction con-
text directly by using TransactionFactory,
Control and Terminator interfaces. The
client starts the new transaction by calling
TransactionFactory.create() method. This

call returns the Control object, which is
used to retrieve references to the Termina-
tor and Coordinator objects. The client sub-
sequently performs calls on transactional
objects. The client explicitly passes the ref-
erence to the Control object as a method
parameter. To finish the current transac-
tion, the client uses the Terminator.com-
mit() method. Upon the request to commit,
the OTS will initiate the two-phase commit
process with all of the registered resources
as described in the previous section.

The server objects do not have to imple-
ment TransactionalObject interface.
Instead, these objects receive the reference
to the Control object as an explicit parame-
ter for each method. This allows the same
object to have both transactional and non-
transactional methods. All transactional
methods must use the passed-in Control
object to retrieve the reference to the Coor-
dinator object and register all their
resources. Figure 3 illustrates how the
client and the recoverable server engage in
transaction processing using the direct
context management and explicit transac-
tion propagation.

Nested Transactions and X/Open
Interoperability

Although the X/Open DTP model does
not define the nested transactions, the
Transaction Service supports this model of
transaction processing. The nested trans-
actions are implemented by establishing a
parent-child relationship among transac-
tions and thus building so-called transac-

Recoverable Server

The Client

Current TransactionFactory
Control
Terminator

Control
Coordinator
RecoveryCoordinator

Current

Persistent
Storage

Persistent
Storage

CORBA OTS

Resource
SubtransactionAwareResource

Synchronization

Transaction
Context

Transactional
Object

Recoverable
Object

Resource

Recoverable Object/Resource

Transaction
Context

Figure 1

35VOLUME: 3 ISSUE: 7 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

tion families. The transaction family com-
prises one top-level transaction and one or
more subtransactions. The subtransactions
can be nested. A transaction will not com-
mit until all subtransactions are committed.
Similarly, the changes committed by the
subtransactions could be rolled back by
ancestor transactions. The nested transac-
tions prove useful in optimizing system per-
formance. By isolating failures in subtrans-
actions, rollbacks and resource recovery
are kept to minimum.

The specification also establishes guide-
lines for integrating with X/Open compliant
systems. In particular, transactions can be
imported and exported across the two
models. The OTS implementations should
allow XA-compliant resource managers to
participate directly in OTS transactions.
The OTS specification explicitly allows a
single transaction service to support both
X/Open DTP and OTS models. This decision
not to engage in “purist” arguments will cer-
tainly prove critical to the specification's
success with vendors and customers. The
transaction monitor vendors can leverage
their experience with X/Open and incre-
mentally add OTS support onto the existing
products (e.g., IBM TXSeries Transaction
Server). On the other hand, users can easi-
ly integrate their “legacy” systems with the
new CORBA-compliant applications.

CORBA OTS Implementations
While the service specification defines a

set of standard interfaces and scenarios,
ORB vendors provide the actual implemen-
tations of the service. Contrary to popular
belief, the common specification and lan-
guage mapping do not necessarily lead to
interchangeable implementations. While
this allows vendors to differentiate their
products, it also causes significant prob-
lems when porting server objects across
different ORBs. Object Management Group
recognized the problem and defined the set
of interfaces for porting the Transaction
Service across various ORBs (CosTSPorta-
bility module). The service portability is
achieved by defining specific interfaces
that lie between the ORB and the Transac-
tion Service. While this model virtually
guarantees the portability of the service,
using the same vendor’s ORB and COR-
BAservices is still the safest and most prac-
tical decision.

From the user’s standpoint, implement-
ing CORBA solutions can be greatly simpli-
fied by leveraging a complete CORBA
“suite” that usually allows for easy integra-
tion of CORBAservices, transaction moni-
tor, server utilities, common IDE and possi-
bly a set of classes for simpler client-side
programming. For example, in addition to
the implementation of standard CORBAser-

1. Get Current

The Client The OTS The
Recoverable

Object

2. Return Current

[If Resource not registered]
5. Get Current

6. Return Current

7. Current.get_control()

14. Return Results

8. Return Control

9. Control.get_coordinator()

10. Return Coordinator

13.
Perform
client
request

20.
Commit
changes

18. Save Transaction info into safe storage

11. Coordinator.register_resource(this)

[If ready to commit]
17. Return VoteCommit

12. Return RecoveryCoordinator

16. Resource.prepare()

19. Resource.commit

3. Current.begin()

15. Current.commit()

4. Call the server

The recoverable object implements
TransactionalObject interface to
indicate automatic transaction support.
It also implements Resource interface
identifing itself as a resource.

Figure: 2

36 • VOLUME: 3 ISSUE: 7Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

vices, Iona's Orbix Object Transaction Mon-
itor (OrbixOTM) also offers a set of GUI
development tools, server-side manager
with SMTP support, fault “resilience” and
server load balancing. As CORBA matures,
we are likely to see more of these complete-
suite products, which will help to push
CORBA further into the enterprise main-
stream.

On the Java side, OMG provides a stan-
dard Java mapping of IDL data types, mod-
ules and other constructs. It also offers
details on server-side mapping of transient
and persistent objects, Java ORB portabili-
ty and mapping of CORBA pseudo objects
into Java. JDK 1.2 contains a great example
of this mapping -- an implementation of
CORBA 2.0-compliant ORB and CORBA
Naming service.

In addition to JDK 1.2, the release of the
Java Transaction Service (JTS) and Enter-
prise JavaBeans (EJB) specifications fur-
ther strengthened the bond between
CORBA and Java. These technologies also
helped to clear up some of the confusion
over the relationship of CORBA and the
Java platform.

EJB was designed to provide a high-level
component architecture for writing busi-
ness applications. In general, the enterprise
bean object can use automatic declarative
transaction management by specifying a
transaction attribute. The bean container
interposes all client requests, and the con-
tainer is then responsible for managing the
transaction according to the transaction
attribute. EJB defines valid values for
the bean transaction attribute
(TX_NOT_SUPPORTED, TX_BEAN_MAN-
AGED, TX_REQUIRED, TX_SUPPORTS,
and TX_REQUIRES_NEW) that are very
similar to Microsoft MTS transaction attrib-
utes. For example, the bean marked TX_
REQUIRED will execute in the client’s trans-
action context, if the client has one. Other-
wise, the new transaction is automatically
created. The bean can also choose to use
manual transaction management by speci-
fying TX_BEAN_MANAGED attribute.
Under this scenario, the clients and the
beans use the JTS javax.jts.UserTransac-
tion interface (see Listing 2) to directly
manage the transaction. In fact, UserTrans-
action interface is the only JTS interface
that the bean container must provide to be
EJB compliant.

The JTS specification defines a standard
transaction management API for the Java
platform. It includes org.omg.CosTransac-
tions and org.omg.CosTSPortability pack-
ages that contain the standard Java map-
ping of the CORBA OTS modules. As men-
tioned before, the JTS also defines a high-
level application transaction “demarcation”
API (javax.jts package). Since this API pro-

1. Get TransactionFactory

The Client The OTS The
Recoverable

Object
2. Return
TransactionFactory

4. Return Control Object

13. Return Terminator

5. Call the server methods passing Control explicity

[If Resource not registered]
6. Control.get_coordinated

7. Return Coordinator

11. Return Results

8. Coordinator.register_resource()

9. Return RecoveryCoordinator

10.
Perform
client
request

19.
Commit
changes

17. Save Transaction info
 into safe storage

[If ready to commit]
16. Return VoteCommit

15. Resourse.prepare()

18. Resource.commit

3. TransactionFactory.create

12. Control.get_terminator()

14. Terminator.commit()

The recoverable object implements
TransactionalObject interface to
indicate automatic transaction support.
It also implements Resource interface
identifing itself as a resource.

Figure: 3

37VOLUME: 3 ISSUE: 7 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

vides an isolation layer between the enter-
prise beans and the service implementa-
tion, in theory any transaction manager
exposing this API can participate in the EJB
model.

Conclusion
In order to develop enterprise business

components in Java, we need to provide
support for distributed transaction pro-
cessing. The X/Open DTP model defines
the set of standard interfaces and behav-
iors for implementing distributed transac-
tions. On the Windows platform, it is
Microsoft Transaction Server that pro-
vides COM components with common ser-
vices, such as resource management,
object pooling and the DTP-like transac-
tion model.

The CORBA Object Transaction Service

offers an alternative model for two-phase
commit transactions. The OTS specification
describes how the clients, transactional
objects, resources and the OTS participate
in transaction creation, context manage-
ment, transaction propagation and two-
phase commit protocol. In addition to the
flat transaction model, the Transaction Ser-
vice provides support for nested transac-
tions. While a variety of OTS commercial
implementations are available, their suc-
cess will often be determined by features
like transaction monitor, CORBA server
management and productivity tools, and
ease of integration with “legacy” X/Open
DTP-based applications.

With the release of JDK 1.2, Java Trans-
action Service and Enterprise JavaBeans
specifications, CORBA and Java platform
integration has never been better. EJB pro-

vides necessary
higher-level abstrac-
tions for creating
business compo-
nents in Java. At the
same time, EJB relies
on technologies like
CORBA to provide
the underlying ser-
vice implementation.
As a result, under-
standing of CORBA,

CORBAservices and CORBA OTS in particu-
lar will prove to be essential for building
large business systems in Java.

References and Resources
Arnold, K., and Gosling, J., “The Java Pro-
gramming Language,” Addison-Wesley,
Reading, MA, 1996.
“Distributed TP: XA Specification, X /Open
Document C193,” X/Open Company Ltd.,
Reading, UK, 1992.
“Enterprise JavaBeans, Version 1.0,” Sun
Microsystems, Palo Alto, CA, March 1998.
“OrbixOTS Administrator’s and Program-
mer’s Guide,” IONA Technologies PLC,
Cambridge, MA, 1997.
“OrbixOTM Guide,” IONA Technologies
PLC, Cambridge, MA, 1997.
“Transaction Service Specification: Version
1.1,” Object Management Group, Novem-
ber 1997.
“White paper - The Object Transaction Ser-
vice,” IONA Technologies PLC, Cambridge,
MA, 1997.

About the Author
Maros Cunderlik is a lead consultant with 3M. He
focuses on applications design and distributed object
architectures. He can be reached at
mcunderlik@mmm.com.

Listing 1: CosTransactions Module (OMG IDL).

//The CosTransactions Module

#include <Corba.idl>
module CosTransactions
{

//DATATYPES
enum Status
{

StatusActive,
StatusMarkedRollback,
StatusPrepared,
StatusCommitted,
StatusRolledBack,
StatusUnknown,
StatusNoTransaction,
StatusPreparing,
StatusCommitting,
StatusRollingBack

};
enum Vote
{

VoteCommit,
VoteRollback,
VoteReadOnly

};

//Structure definitions
struct otid_t
{

long formatID; /*format identifier. 0 is OSI TP */
long bqual_length;
sequence <octet> tid;

};
struct TransIdentity
{

Coordinator coord;
Terminator term;
otid_t otid;

};
struct PropagationContext
{

unsigned long timeout;
TransIdentity current;

mcunderlik@mmm.com

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

Wall
Street
1/4 Ad

38 • VOLUME: 3 ISSUE: 7Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

SIGS S

39VOLUME: 3 ISSUE: 7 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

gpharrison@compuserve.com

SPREAD

40 • VOLUME: 3 ISSUE: 7Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Visual Age for Java™ provides a good
IDE for object oriented development. One
of the strong points of Visual Age for Java
is its support for JavaBeans. As everyone
in the world knows by now JavaBeans are
components, or software parts, from
which applications can be built. This has
been the holy grail of object-oriented
development, and Visual Age for Java sup-
ports it well. It provides a convenient,
connect-the-dots metaphor for assem-
bling an application from parts.

One of the obvious questions one
might ask, of course, is, “Where do the
parts come from?” IBM does supply some
JavaBeans with Visual Age for Java but,
naturally, they won’t do everything. If you
need parts, and they’re not
available, Visual Age for Java
makes the process easy. Once
you’ve made the new parts
they are reusable in any appli-
cation. They can even be
exported for use outside VAJ.

I’ll illustrate this with the
String Bean. Let’s say you’ve
developed a number of string
handling functions that could
be used in various situations or
programs. You could simply
include them when they’re
needed in a new application
but JavaBeans provides a bet-
ter alternative. You can reuse
Beans without changing, or
even knowing about, the code
itself. You can then expose the
methods or properties of the
Bean and connect your applica-
tion to them.

For example, you might
need to parse an input string
into its component words. If a
method for this was included in
a String Bean, you could design

the input applet or application frame visu-
ally in Visual Age for Java using the sup-
plied design beans, adding an instance of
the String Bean to your frame and then
connecting the JavaBeans. These are the
steps you need to take to create a simple
application that will allow input of a text
string, and then display the individual
words of the string in a list box at the click
of a button.

First, open Visual Age for Java and cre-
ate a new applet. When prompted for pro-
ject and package names, use StringBean-
Proj and StringBeanPack. The hierarchy
should look something like that in Figure1.

Next, create a new class and name it
StringBean, but choose not to design it

visually. Be sure to import the java.awt.*
and java.util.* packages when prompted.
Then, create a new method for the String-
Bean class called stringToken with a sig-
nature of public static void stringToken
(String Instring, List fillList). Add the code
block in Listing 1 and save it.

Now, if you select the BeanInfo tab you
see a list of all available features and prop-
erties for the new StringBean bean. It
should look like Figure 2.

Next, select the StringBeanPack pack-
age in the hierarchy and click the C button
to build a new class. Call this class String-
BeanView and select the choice to design
it visually, or go to the Visual Composition
editor. After the blank applet panel is dis-
played, you’ll need to add the appropriate
beans from those supplied with Visual Age
for Java to complete the
application/applet. First, add a TextField
bean. Then, add a List bean. Finally, add a
Button bean and change the label proper-
ty of the bean to String Bean.

You’re ready to add the StringBean Jav-
aBean we just created. From the main

A String Bean: Making
JavaBeans with VAJ

The holy grail of object-oriented development

JAVA PROGRAMMING TECHNIQUES

by Mike Fichtelman

Figure1

41VOLUME: 3 ISSUE: 7 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

menu select Options, then Add Bean. In
the dialog box displayed, you can either
type StringBean or choose to Browse
through the available beans and select it
off the list. Click OK, then click again any-

where outside the frame boundary and
the jigsaw part icon for StringBean1 to
appear.

Now that all the beans are in place it’s
time to connect them together. For the

first connection click the right mouse but-
ton on the String Bean Button, then select
Connect and then
actionPerformed(java.awt.event.Action-
Event) from the drop down menus. Move
the mouse pointer to the StringBean1 icon
and click mouse button 1, then select All
Features. From the bean Features list,
select the stringToken() method created
earlier.

For the second connection to the
TextField bean click mouse button 2 on
the first connection line and select Con-
nect. From the list displayed, select
inString. Drag the mouse pointer to the
TextField bean and click mouse button 1.
From the list displayed, select text.

For the third connection to the List
bean click mouse button 2 on the first
connection line and select Connect. From
the list displayed, select fillList. Drag the
mouse pointer to the List bean and click
mouse button 1. From the list displayed,
select “this.”

Now that all the connections between
the beans are complete the design panel
should look like Figure 3.

You can test the StringBean applet by
selecting Tools->Test->Run from the main
menu of Visual Age for Java. Type some
text into the TextField(be sure to leave
some blanks between words), click the
String Bean button and a list of the words
in the input string will be displayed in the
list box.

I’m sure you can see how this humble
foundation could be used to build more
extensive applications. Other string han-
dling and manipulation functions can be
added to the StringBean bean at any time,
making their addition to a new application
a simple drag and drop operation. You
could even add a StringBean feature that
changes string text colors from black to
green!

About the Author
Mike Fichtelman is a systems planning officer at
ABN AMRO Information Technology Co., and is
involved in various Web development projects.
Mike can be reached at mike.fichtelman@abnaro.com.

Listing 1.
/**
* This method was created by a SmartGuide.
* @return java.lang.String
* @param fillList List
*/

public static void stringToken (String Instring, List fillList) {

StringTokenizer tokenizer = new StringTokenizer(Instring," ");

while (tokenizer.hasMoreTokens())
{

fillList.addItem(tokenizer.nextToken());
}

}

mike.fichtelman@abnaro.com

Figure 2

Figure 3

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

42 • VOLUME: 3 ISSUE: 7Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

43VOLUME: 3 ISSUE: 7 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

I remember how I first got
into Java. A friend called
my attention to these
neat little mini applica-

tions that could be easily
embedded into HTML files.

These applets provided a quick
way to jazz up even the most mundane Web
pages. She showed me some UseNet groups
that contained huge libraries of these
applets. I soon learned how to go into their
code and change (dare I use the word
“hack”?) them to fit my needs. Those applets
were nobody’s property; they were just there
for the taking. Some people would come up
with clever ways of making them run more
efficiently, and would post their findings for
all to use. When working with pubic archives,
this is all well and good. The problem is
many people learned how to hack Java appli-
cations that were not public domain. They
would download applications, decompile the
source and hack it to look like their own.

Today’s complicated Java application
involves many hours of hard work. Many of
us do so under the employment of a compa-
ny that stands to gain or lose hundreds of
thousands of dollars based on the success
of the application. We can’t take the risk of
unethical people using our code to suit their
own needs. At the same time, code has to be
quick and neat. What we need is a develop-
ment tool that makes it literally impossible
to hack source code without sacrificing
speed and efficiency. What’s needed is
DashO-Pro from preEmptive Solutions.

Obfuscation With Traditional and
Advanced Methods

No program is totally safe from decompil-
ers (to claim so would invite big trouble!), but
DashO-Pro makes life as difficult as possible
for them. Some of the methods used are:
• The removal of extraneous debugging

information from class files.
• Removal of unused classes, fields and

methods for maximum size reduction.
• Renaming all possible methods, classes

and fields. All methods, such as public
and private, can be renamed as long as
they don’t override a method from a non-
included class. This process does not
effect methods such as init and paint.
Renaming reduces all to one or two-char-
acter names. Since decompilers have the
ability to rename unprintable names back
to printable ones, DashO-Pro provides
sophisticated renaming properties that
can’t be bypassed by decompilers.

• The duplication of constant pool entries.
This is a clever feature, as it won’t
rename multiply-used entries. Suppose
the string “testing” is printed while there
is a method called “testing;” the string
would be printed as is but the method
would be renamed.

• The use of irreducible control flow
graphs for obfuscation. These can’t be
produced in the Java language due to its
control structure. Code is changed in

such a way that it no longer has an equiv-
alent sequence in Java at the source level.

More Than Just an Obfuscator,
It’s an Advanced Optimizer, Size
Reducer and Packaging System

Anyone who has ever done programming
knows the value of correct, efficient code.
Traditionally, an optimizer is used to
increase code performance. Optimizing
tools for Java have been up until now imma-
ture at best. DashO-Pro implements many

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
Dash-O Pro
preEmptive Solutions.
26250 Euclid Ave, Suite 503
Cleveland, OH 44132
Phone: 216 732-5895
Fax: 216 732-5897
Web: http://www.preemptive.com
Email: dasho@preemptive.com
Requirements: Java 1.1 compatible runtime 64
Meg (min), 96 Meg (recommended)

DashO-Pro
by preEmptive Solutions

PRODUCT REVIEW

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
World class

 AWARD

by Ed Zebrowski

Protect Your Work; Streamlining
and Hiding Your Code

Figure 1: When using the GUI, Optimization can be as simple as clicking on radio buttons.

44 • VOLUME: 3 ISSUE: 7Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

standard optimizing transforms unavailable
in today’s Java compilers, as well as some
new transforms targeted specifically for
Java bytecode.

One classic optimization is dead code
elimination. DashO-Pro takes this to the nth
degree by removing all unused information in
your program. preEmptive Solutions has pro-
vided the following sample code to demon-
strate DashO-Pro’s removal techniques:

class MyClass {
int Z;
public static void main(String args[]) {

System.out.println("Hello World");

}

public void doesNothing() {
Z = 5;
OtherClass X = new OtherClass();
X.doOtherThings();

}
}

In this example, DashO-Pro’s algo-
rithms detect that the “doesNothing”
method is never called: therefore, it is
removed along with “OtherClass” and the
“Z” variable. DashO-Pro’s output only
includes the absolute minimum set of

classes, methods and fields required by
your application. Your code size is mini-
mized, often a desired feature for applets
and other code that needs to move around
the network.

Using DashO-Pro
DashO-Pro can be run as a command line

or GUI application. When running as a com-
mand line program there are five runtime
options that can be used with DashO-Pro:
1. –f :force execution. This option, as the

name suggests, forces execution, even
when your application uses dynamic
class loading (e.g,. by using the Class for-
Name method). To use this option, it is
necessary to specify all dynamically
loaded classes in the configuration file;
alternatively, you may allow DashO-Pro to
automatically detect possible dynamical-
ly loaded classes.

2. –v :verbose output. When this option is
used information is given about the
progress of the execution.

3. –i :investigate only. This option tells
DashO-Pro not to create any disk files. A
report will be generated which specifies
the candidates for removal.

4. –q :run quietly. In this mode, DashO-Pro
runs completely without printed output.
Use this option for inclusion into applica-
tion build sequences. The verbose option
will be overridden here.

5. <configfile> : configuration file. This allows
the naming of a specific configuration file,
which is required for running DashO-Pro.
This is a handy option when using multi-
ple, tailor-made configurations in DashO-
Pro. Trigger methods are not entered on
the command line, as they must be includ-
ed in configuration file.

When using the GUI, it is not necessary
to write a configuration file, as the GUI is
really a front end to the configuration file.
The interface is initiated by running the
DashO-ProGui class from the jar file. The
Windows enthusiast will be delighted to
know that double clicking the icon will run
the interface. I found the GUI to be well
laid out and a snap to move around in.

DashO-Pro’s triple feature of optimiza-
tion, obfuscation and compression makes it
an extremely valuable tool in the profes-
sional Java developer’s bag of tricks. If you
have a need to streamline and hide your
code, it’s a must have!

About the Author
Edward Zebrowski is a technical writer based in
Orlando, FL. Ed runs his own Web development com-
pany, ZebraWeb, and can be reached on the Net at
zebra@rock-n-roll.com.

zebra@rock-n-roll.com

1/2 Ad

45VOLUME: 3 ISSUE: 7 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

46 • VOLUME: 3 ISSUE: 7Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Let’s take a minute to recap the discus-
sion we’ve had so far in The Cosmic Cup.
The Java platform is the software platform
for the computing environment defined by
Java. The Java platform APIs define the
application programming interface for the
Java platform, which consists of categories
of APIs that address different segments of
computing and related industries.

However, several APIs defined under the
scope of Java APIs don’t fall under any of
the formal categories defined under the
Java platform, namely Base Platform, Com-
merce, Security, Media, Enterprise and
Server. In last month’s column these APIs
were mentioned as “Nonstandard Java
APIs.” This month we’ll focus on these APIs.

Before we begin, I’d like to point out that
this is not a category formally defined by
JavaSoft; it is a category I have defined for
the purposes of our discussion, to provide
complete coverage of the scope of APIs
defined under Java. Note also that for the
moment we will forgo discussion of Java
technologies that focus on hardware
devices, embedded Java and Java operating
system APIs (JavaOS). We will also post-
pone discussion on APIs that focus primar-
ily on browser-based interfaces. These two
kinds of APIs warrant independent discus-
sions, and I will cover them in future arti-
cles for The Cosmic Cup.

Nonstandard APIs
The APIs defined under the “nonstan-

dard APIs” category supplement the APIs
formally defined under the Java platform
APIs. They are based on some of the plat-
form APIs and enhance the functionality of
the APIs they extend. Figure 1 illustrates
the APIs discussed in this article. These
APIs are:
• JavaBeans Activation Framework (JAF)
• InfoBus
• JavaMail
• JavaSpaces
• JavaHelp

These APIs, and the roles of each API in

Java and platform APIs related to each API,
are provided in Table 1. The following sec-
tion briefly examines the APIs listed in the
table.

JavaBeans Activation Framework
This framework (formerly known as

Glasgow) enhances the functionality of Jav-
aBeans by adding data awareness to the
data types used in JavaBeans-based com-
ponent design. The standard Java platform
does not provide a consistent strategy for
determining the data types of a software
component, binding typed data to a com-
ponent or an architecture to support these
features. JAF overcomes these shortcom-
ings in the JavaBeans component model.

JAF uses MIME (Multipurpose Internet
Mail Extensions) types to encapsulate and
determine the data type. Using JAF, devel-
opers can write JavaBeans-based compo-

nents that provide added functionality to
Web browsers, office suites and other
Beans-based environments. The JAF tech-
nology proposes data typing and a registry
to hold definitions of these data types. It
implements the following services:
• Determines the type of arbitrary data

based on MIME types
• Encapsulates access to data based on the

data’s MIME type
• Discovers operations available on a par-

ticular data type
• Instantiates the software components

that correspond to specific operations on
a particular piece of data

The major pieces of the JAF are:
1. DataHandler class: This class provides a

consistent interface between JAF-aware
clients and other subsystems. It encapsu-
lates a data object (which is an instance
of the typed data) and provides methods
that can act on this object.

2. DataSource interface: This interface

The application programming interfaces
that enhance the functionality

Other Java APIs and Products

COSMIC CUP

by Ajit Sagar

Related
API Description Platform APIs Role
JavaBeans Provides a set of standard services to JavaBeans Component
Activation introspect on a piece of data and to Development,
Framework instantiate the appropriate JavaBeans messaging
(JAF) component to perform operations on it

InfoBus Provides a generic mechanism for JavaBeans Component
exchanging data between JavaBeans development
components by defining a small number
of interfaces between cooperating Beans
and specifying the protocol for use of
those interfaces

JavaMail Models a mail system that provides a JAF Networking,
framework for building Java-based mail messaging
and messaging applications

JavaSpaces Provides a distributed persistence and Java RMI Distributed
data exchange for Java objects component

development,
networking.

JavaHelp Defines a universal Help system for the JFC User interface
Java platform for designing platform- design
independent help content for graphical
user interfaces

Table 1: Nonstandard platform APIs

47VOLUME: 3 ISSUE: 7 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

encapsulates an object that contains the
data. The encapsulated object can return
a string that defines the MIME type for
the data, as well as a stream that provides
data access. Classes extending the Data-
Source interface can be implemented for
common data sources like the Web, file
systems, IMAP, ftp, etc. The interface can
also be extended to allow per-data-source
user customizations. The DataSource is
set in the DataHandler class. Once this is
done, clients can determine the opera-
tions available on the data. JAF provides
two convenience DataSource class imple-
mentations: FileDataSource, which allows
access to data in a file, and URLData-
Source, which allows access to data at a
URL.

3. CommandMap interface: This interface
allows consumers to determine the “com-
mands” available on a particular MIME
type. It also provides an interface to
retrieve an object that can operate on an
object of a particular MIME type. The
CommandMap maintains a list of avail-
able operations on a particular data type.
JAF defines a framework for the Com-
mandMap that allows components to
determine which commands are available
on the system.

4. Command Object interface: This interface
is extended by JavaBean components in
order to interact with the JAF services.
This enables the JavaBeans to directly
access their DataSource and DataHandler
objects to retrieve the data type and act
on the data.

The JavaBeans Activation Framework is
implemented as a standard extension. Sun
provides a reference implementation of JAF
for the draft 1.0 specification.

InfoBus
InfoBus enhances the functionality of

JavaBeans by enabling dynamic exchange
of data between JavaBeans components by
defining a small number of interfaces
between cooperating Beans and specifying
the protocol for use of those interfaces. The
JavaBeans model allows developers to con-
struct applications by connecting compo-
nents programmatically and/or visually.
However, the specifications do not suggest
methods by which these Beans should
dynamically exchange data.

Both the InfoBus and JAF enhance the
JavaBeans model, but in different ways. JAF
supports data exchange using MIME types,
and thus provides support for exchanging
typed data. It also supports dynamic deter-
mination of the commands associated with
the data. InfoBus defines sophisticated data
models that have known interfaces to act
on the data. It also defines the event mech-

anism and the protocol for data exchange
within a single JVM.

The InfoBus protocols are based on a
notion of an information bus. All compo-
nents that implement these interfaces can
plug into the bus. As a member of the bus,
any component can exchange data with any
other component in a structured way,
including arrays, tables and database
rowsets. The main components of the
InfoBus are:
1. InfoBus class: This class is at the heart of

this technology. An instance of the class
is the meeting place where members can
join. InfoBus instances can be “named”
within the scope of a JVM. The class
maintains a static list of existing InfoBus
instances, bus members, producers and
consumers, and enables communication
among them for announcing and locating
data items.

2. InfoBusDataProducer interface: This
interface is used to indicate that an
object provides data on the InfoBus. Pro-
ducers announce the availability of new
data items.

3. InfoBusDataConsumer interface: This
interface is implemented by objects that
are seeking data from an InfoBus. Often
these are visual components that will dis-
play the data item, but they can also act
as filters where they modify the data and

then forward it to other consumers.
4. InfoBusMember interface: This interface

must be implemented by classes that
want to join an InfoBus. Typically, data
producer and data consumer objects
implement this interface.

5. DataItem interface: This is the base inter-
face for data items. A very lightweight
component, it is the basic data unit for
data interchange.

6. InfoBusItemAvailableEvent interface:
Event objects implementing this interface
are broadcast on behalf of a producer to
tell consumers about the availability of a
new DataItem.

7. InfoBusItemRevokedEvent: Event objects
implementing this interface are broad-
cast on behalf of a producer to let con-
sumers know that a previously available
DataItem is no longer available.

8. InfoBusItemRequestedEvent: Event
objects implementing this interface are
broadcast on behalf of a consumer to let
producers know about the need for a par-
ticular DataItem.

The InfoBus architecture and API were
developed by Lotus Development Corpora-
tion, Inc., and Sun Microsystems, Inc. The
specification is a final specification as Ver-
sion 1.1 and will be a standard extension in
JDK1.2.

Figure 1

Core Platform APIs

Java Platform Standard APIs

Extension APIs

JavaM
ail

Ja
va

Sp
ac

es

JavaHelp

InfoBus

JAF

48 • VOLUME: 3 ISSUE: 7Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

JavaMail
The JavaMail API provides a set of

abstract classes that model a mail system.
In other words, it provides a platform- and
protocol-independent framework on which
to build Java-based mail and messaging
applications. It includes common conve-
nience classes, which encapsulate common
mail functions and protocols. The JavaMail
API incorporates concepts from IMAP,
MAPI, c-client and other messaging sys-
tems.

JavaMail clients use the JavaMail API
and Service Providers to implement the
JavaMail API. The JavaMail architecture
consists of the following layers:
• The Abstract Layer, which declares inter-

faces and classes to support mail han-
dling

• The Internet implementation layer, which
implements parts of the Abstract Layer
using Internet standards

• The JAF Layer, which uses JAF to encap-
sulate data using MIME types and to han-
dle commands for that data

The main interfaces and classes in the
JavaMail API are:
1. Part interface: This interface defines the

attributes required to define and format
data.

2. Message class: This is an abstract class
that implements the Parts interface and
defines a set of attributes and a content
for a mail message. The attributes specify
addressing information and define the
content structure and type. The content
is a DataHandler object (from the JAF
API). Message subclasses can implement
several standard messages. A Message
may contain multiple parts, each with its
own attributes and content.

3. Folder class: The Folder object stores
Message objects. It can contain other
Folders or Message objects.

4. Store class: This class defines a database
that holds a folder hierarchy together
with its messages. It also specifies the
access protocol for accessing Folders
and retrieving messages and methods to
access a database, and fetch folders.

5. Transport class: This class models the
transport agent that routes a message to
its destination address. It provides meth-
ods for sending a Message object to a list
of recipients.

6. Session class: This final concrete class
defines global and per-user Mail-related
properties that define the interface
between a mail-enabled client and the
network. It allows JavaMail components
to set and get specific properties, a
default authenticated session object that
is shared between desktops. It also acts
as a factory for Store and Transport

objects.
7. MailEvent class: This class provides the

base class for all JavaMail events. It is
based on the JDK 1.1 event model.

The JavaMail API is implemented as a
Java standard extension. Sun’s reference
implementation of the JavaMail software
implementation is currently available as
Version 1.0b.

JavaSpaces
JavaSpaces technology provides a tool

for building distributes protocols. It uses
RMI and object serialization features of
Java to solve two related problems in dis-
tributed computing – distributed persis-
tence and the design of distributed algo-
rithms. JavaSpaces technology will be used
in workflow systems, customer manage-
ment systems, trading services, agent sys-

tems, supply chain management, publish
and subscribe services, resource allocation
management, etc.

JavaSpaces typically provides services
for the middle tier of a typical three-tier
client/server application. However, they
can run in any tier of an n-tier distributed
model. A JavaSpace offers a place for com-
munication between distributed objects on
clients and servers in a network. It may also
be viewed as an event-driven distributed
cache that also supports behavior transfer.

A JavaSpace holds Entries. An entry can
be written into a JavaSpace, which copies
the Entry into local storage. Entries can be
looked up using Templates.

The main parts of a JavaSpace are:
1. Entry: This is a typed group of object ref-

erences represented by a Java class.
2. JavaSpace interface: This interface allows

operations on Entries held in the Java-
Space object. The operations supported
are write, which writes an entry into the
space; read, which returns an entry that
matches the template or an indication
that no match was found (this basically
returns a copy of the entry); take, which

returns the actual entry that matches the
template or an indication that no match
was found (it also removes the entry from
the JavaSpace); and notify, which notifies
a specified object when entries that
match the given template are written into
the JavaSpace.

3. Transaction: This groups multiple opera-
tions on an Entry. The operations are
applied as a batch of operations.

The JavaSpace specification is in the
final version 0.999.

JavaHelp
JavaHelp software is both an API and a

platform-independent, extensible help sys-
tem written entirely in Java. This system
provides capabilities for navigating, search-
ing and displaying help information, thus
allowing end users to learn how to use an
application, applet, component, operating
system, device, or Web page. The JavaHelp
software can also be used to distribute
online documentation in a heterogeneous
environment, such as a corporate intranet
or Internet.

JavaHelp is currently available as an
early access release, version 1.0. It is
expected to be publicly available after the
release of JDK 1.2.

Conclusion
In this article we examined the APIs that

enhance the functionality provided by the
standard Java platform APIs. We briefly
examined the roles played by individual
APIs that fall under this category and
looked at the pieces that define these APIs.
Links for detailed information on all these
APIs may be obtained from Sun’s Java Web-
site at http://java.sun.com/products.

Cosmic Reflections
No API is an island. One interesting

aspect of the APIs discussed here is that
they extend the standard Java APIs to spe-
cific domains. In some respects they may be
viewed as “helper” APIs. It remains to be
seen what new helper APIs will be defined in
future incarnations of Java and what aspects
of existing APIs they will enhance.

About the Author
Ajit Sagar is a member of the technical staff at i2
Technologies in Dallas, TX. He holds a BS in electri-
cal engineering from BITS Pilani, India, and an M.S.
in computer science from Mississippi State University.
Ajit focuses on networking, UI, and middleware
architecture development. He is a Sun certified Java
programmer with eight years of programming experi-
ence, including two in Java. You can e-mail him at
Ajit_Sagar@i2.com.

Ajit_Sagar@i2.com

“InfoBus enhances

the functionality of

JavaBeans by enabling

dynamic exchange of

data between JavaBean

components.”

49VOLUME: 3 ISSUE: 7 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

50 • VOLUME: 3 ISSUE: 7Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Object-oriented software development
using Sun Microsystems’ Java language has
become an industry standard for building
scalable enterprise client/server applica-
tions. Additionally, most online transaction
processing (OLTP) applications developed
today by enterprises use relational databas-
es as a standard DataStore, forcing develop-
ers to be proficient in the details and intri-
cacies of both relational database design
and object-oriented programming. They
also must contend with mapping objects to
relational schema, object management and
caching, object navigation, transaction and
concurrency controls. However, until
recently developing Java applications with
relational databases has been a time con-
suming process for developers.

To simplify development of application
programs that use the Java programming
language objects and relational databases,
Sun Microsystems is introducing a new soft-
ware product called Java Blend. The prima-
ry goal of Java Blend software is to provide
programmers with a tool to easily develop
business applications entirely in Java. With
Java Blend, developers aren’t required to
learn the details of relational databases or
Structured Query Language (SQL).

Java Blend consists of a development
tool and a run-time environment. The devel-
opment tool provides bidirectional mapping
that can be used to map existing relational
schema into a set of Java classes or map an
application model written in Java to a new
database schema to store instances of Java
classes. The run-time environment provides
transparent and automatic conversion of
database records to Java programming lan-
guage objects and Java programming lan-
guage objects to database records, object
navigation, transactions, concurrency and
object caching for high performance.

Java Blend understands a database
schema and can automatically generate the
default mappings based on the relationship
information between the tables, whether it
is one-one, one-many, many-many, foreign

key or inheritance. Additionally, it features
the advanced capability to modify mapping
of views on multiple tables, mapping a Java
class to multiple tables or multiple Java
classes to one table. Features such as using
different names and types in Java and the
database for the same fields are also sup-
ported, of course.

Applications written in Java Blend are
highly portable, not only because the code
generated is 100% pure Java, but also
because it is based on the Object Database
Management Group (ODMG) standard for
object/relational mappings and object data-
bases. Java Blend uses JDBC to communi-
cate to relational databases so that any
database with JDBC support automatically
becomes usable by Java Blend; it supports
several major databases in its first release,
and will support any JDBC or ODBC based
database in later releases.

Java Blend supports optimistic concur-
rency as well as the traditional pessimistic
locking. Use of the optimistic concurrency
control mechanism allows Java Blend to
detect the values that have changed in the
program’s memory and database since the
last transaction began. This results in high-
er performance and scalability at run time.

Application development using Java Blend
can be broken down into four main steps.

1. Object/Relational Mapping
Using the Java Blend tool, map your

database schema to Java classes or vice
versa. For example, if you had two tables –
Customer and Orders – in your database
that were defined by the data definition
statements in Listing 1, Java Blend would
generate the class definitions for Customer
and Orders in Listing 2.

Java Blend automatically generates
member variables for each column and
accessors/mutators for each member vari-
able. Java Blend also understands rela-
tions between tables and maps them as
one-one, one-many or many-many
relationships between Java classes

depending on the relationship between the
tables. It then generates appropriate acces-
sors/mutators and other helper methods.
For example, Java Blend figured out the
one-many relationship between Customer
and Orders and generated an accessor
method getOrdersForCustomer that
returns a collection of Orders objects and
other helper methods, like addOrdersFor-
Customer and removeOrdersForCustomer
for adding and removing Orders objects for
a Customer.

Before products like Java Blend, these
mappings had to be done manually by
someone who understood both the data
model and the object model. As this exam-
ple shows, such a mapping can now be cre-
ated automatically, including more complex
one-many and many-many relationships.

2. Add Business Logic
Almost every business application will

have some business logic. With Java Blend, the
business logic can be added into the generat-
ed Java classes in the form of new methods or
embedded in the accessors and mutators.

For example, the code snippet in Listing
3 shows how the method addOrdersFor-
Customer in class Customer can be modi-
fied to check the customer’s credit history
before placing the order.

3. Write Queries
Queries are often required in applica-

tions to extract data. Java Blend supports
industry standard Object Query language
(OQL) that has been defined by ODMG.
OQL has a rich syntax that allows the writ-
ing of simple to complex queries to extract
data in the form of Java objects from a rela-
tional database. For example, the following
query will extract all the Orders objects
with a unit price greater than $100:

Select O from Orders O
Where O.unitprice > 100;

This query will be compiled using the
Java Blend tool and then later instantiated in
your program to get a collection of “Orders.”

With OQL, queries are written using the
object model, not the relational model. This
makes it much more intuitive and easy for
object-oriented programmers to use.

4. Write the Application
So far we have seen how the mapping

ANYTHING NEW UNDER THE SUN

Writing Java applications that access relational
databases has just become easier

by Syed Q. Abbas

Enterprise Application Development
Using Java Blend

http://www.JavaDevelopersJournal.com 51Java DEVELOPER’S JournalVOLUME 3 ISSUE 7 •

works, where to add business logic and
how to write an OQL query. Still missing,
however, are ways to open and close the
database, start and commit transactions
and, a method of concurrency control.

Java Blend provides a set of Application
Programming Interfaces (API) for database
and OQL queries and transactions. The
code snippet in Listing 4 demonstrates how
some of these APIs can be used in a typical
database application.

Notice that the open method takes a
database URL, a user name and a password
as arguments.

Starting the Transaction is as simple as
creating an instance of the Transaction
object and invoking the begin method. The
begin method takes an argument that spec-
ifies the concurrency mode. In this case the
transaction mode is optimistic. The value

Transaction.PESSIMISTIC will start the
transaction in the traditional locking mode.

The new and set methods on objects
between the begin and the commit state-
ments will result in changes in the relation-
al database. For example, in this case a Cus-
tomer object with customerid 1000 will be
created as a row in the Customer table in
the relational database.

With Java Blend software, even transac-
tions are object-oriented, not relational ori-
ented. This makes application development
much easier for developers who are famil-
iar with the object model but not as familiar
with relational databases.

Java Blend software allows program-
mers to easily develop business applica-
tions entirely in Java without having to
learn the details of relational databases or
SQL. With Java Blend, writing Java applica-

tions that access relational databases has
just become much easier.

If you would like more information on
the Java platform or Java Blend software,
visit http://java.sun.com, or call 1-888-THE-
JAVA.

About the Author
Syed Q. Abbas is a senior Java developer at Sun
Microsystems in Menlo Park, CA. Syed received his
master’s degree in computer science from AMU Ali-
garh, India, and has worked in the software industry
for eight years. Syed can be reached at
syed.abbas@Eng.sun.com.

Listing 1.
CREATE TABLE Customer (

CustomerId INTEGER NOT NULL PRIMARY KEY,
Name VARCHAR(32),

Address VARCHAR(100)
)

CREATE TABLE Orders (
OrderId INTEGER NOT NULL PRIMARY KEY,
CustomerId INTEGER NULL REFERENCES Customer,
Item VARCHAR(20),
UnitPrice NUMERIC,
Quantity INTEGER
)

Listing 2.
// Customer class
public class Customer implements PersistenceCapable {

private int customerid;
private String name;
private String address;
private DCollection ordersForCustomer;

// Accessor methods
public int getCustomerid() {

return customerid;
}
public void setCustomerid(int customerid) {

this.customerid = customerid;
}

public String getName() {
return name;

}
public void setName(String name) {

this.name = name;
}

public String getAddress() {
return address;

}
public void setAddress(String address) {

this.address = address;
}

public Iterator getOrdersForCustomer() {
return ordersForCustomer.iterator();

}
public void addOrdersForCustomer(OrdersordersForCustomer)

{
this.ordersForCustomer.add(ordersForCustomer);

}
public void removeOrdersForCustomer(OrdersordersForCustomer) {
this.ordersForCustomer.remove(ordersForCustomer);
}

// Constructors
public Customer (Database db, int p_customerid) {

this.customerid = p_customerid;
}

}

// Orders class
public class Orders implements PersistenceCapable {

private int orderid;
private String item;
private long unitprice;
private int quantity;
private Customer customerForOrders;

// Accessor methods
public int getOrderid() {

return orderid;
}
public void setOrderid(int orderid) {

this.orderid = orderid;
}

public String getItem() {
return item;

}
public void setItem(String item) {

this.item = item;
}

public long getUnitprice() {
return unitprice;

}

syed.abbas@Eng.sun.com

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

52 • VOLUME: 3 ISSUE: 7Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

public void setUnitprice(long unitprice) {
this.unitprice = unitprice;

}

public int getQuantity() {
return quantity;

}
public void setQuantity(int quantity) {

this.quantity = quantity;
}

public Customer getCustomerForOrders() {
return customerForOrders;

}
public void setCustomerForOrders(Customercustomer-

ForOrders) {
this.customerForOrders = customerForOrders;

}

// Constructors
public Orders (Database db, int p_orderid) {

this.orderid = p_orderid;
}

}

Listing 3.
public void addOrdersForCustomer(Orders ordersForCustomer) {
// check the credit history before adding the order
if (CreditHistory.getCreditHistory(this) == CreditHistory.BAD){

System.out.println("Sorry, bad credit history");
return;

}
// customer has a good credit history
this.ordersForCustomer.add(ordersForCustomer);

}

Listing 4.
// open the database
Database db = Database.open("jdbc:microsoft://thestork:1433/order-
entry",
"scott", "tiger");

// start a transaction to create a new Customer

Transaction t = new Transaction();
t.begin(Transaction.OPTIMISTIC);
Customer c = new Customer(db, 1000);
c.setName("Foor Bar");
c.setAddress("901 San Antonio Road, Palo
Alto CA-94303");
// do some more stuff like create orders for this customer etc..
try {

t.commit();
} catch (RetryException re) {

System.out.println("The transaction did not go through.
Try
again.");
}

// close the database
db.close();

1/2 Ad

53VOLUME: 3 ISSUE: 7 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Ad

54 • VOLUME: 3 ISSUE: 7Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

A C++ programmer buddy of
mine got some extra work
writing server-side appli-
cations in Java. He was a
little pressed for time so

he asked me about an IDE.
“There are hundreds of

those things floating around
out there,” he lamented. “How do I know
which one is best?”

He had a point. Almost overnight there
were more IDEs on the market than you can
shake a 486 laptop at. Slogging through
them all would be tiresome to say the least.
I didn’t hesitate when answering him,
though, because I recently tried one that
overwhelmingly impressed me. “Try
SuperCede for Java Professional Edition,” I
said to him.

A Tutorial To Get You Started
Included with the Professional Edition of

SuperCede is the MindQ tutorial. Whether
you’re just trying to get used to SuperCede
as a new environment or you’ve never pro-
grammed before, MindQ is essential as a
learning and reference tool. Among its many
features it boasts a quick-access indexed
format, hundreds of definitions of terms and
links to Web sites that will further your
knowledge of Java. I had never used

SuperCede before, but with the help of
MindQ I was on my way in minutes!

The Age-Old Problem of Simplicity
Versus Effectiveness

In the past, IDEs came in two types: there
were products that had many useful fea-
tures, but were so confusing in their layout
that they were burdensome to use; some
were quite simple, but lacked many of the
tools and features needed by the serious
developer. SuperCede seems to have solved
this dilemma. Although the interface is
quite simple, I found this to be a powerful
and complete building tool.

Simplicity...
SuperCede opens in a “Project” window

which displays the contents of the current
project. Another project can be selected by
clicking on “Open Project...” in the project
menu, or a new project can be initiated by
selecting “New Project...” (see Figure 1).

One of the major problems I’ve had with
other IDEs is the number of windows need-
ed to keep track of all the building opera-
tions. For complicated applications the
number of windows in some development
environments is staggering. This is where
SuperCede offers a big advantage. When a
new project is started the “Component” win-

dow will open. Almost all aspects of build-
ing your application can be performed from
this single window. This includes, but is not
limited to, editing source files, creating
forms, viewing files and viewing class hier-
archies (see Figure 2).

This window is divided into two panes.
On the left is the Browser pane, which
allows selection of browsers for forms,
beans, source files, data sources and even
imported DLL files. When a file is opened
from this browser, a viewer or editor opens
in the Editor pane on the right. If a source
file is selected, for instance, a source code
editor opens on the right. Selection of a
Bean will result in the opening of the Beans
browser. This allows bean properties to be
inspected. Beans may be dragged directly
from the browser onto a form or from a pre-
configured palette.

PRODUCT REVIEW

SuperCede
by SuperCede, Inc.

Looking for a life raft in the vast sea of
IDEs? Swim towards SuperCede!

by Ed Zebrowski

Figure 1: SuperCede opens with a “Projects” window

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
SuperCede
SuperCede, Inc.
110 110th Ave NE
Bellevue WA 98004
Phone: 800 365-8553
Fax: 425 637-5886
Web: http://www.supercede.com
Email: sales@supercede.com
Requirements: P90 or greater, 48 MB RAM (64 MB
recommended), 200 MB disk space, Windows 95
or Windows NT 4.0
Price: $995 (Professional Edition Price)

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
World class

 AWARD

55VOLUME: 3 ISSUE: 7 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

At the top of the
Component window is
the Component tool-
bar. The toolbar exem-
plifies SuperCede’s
ability to perform tasks
simply without sacri-
ficing power. A simple
click is all that’s need-
ed. Entire projects can
be compiled by choos-
ing “Build All.” Select-
ing “Execute” runs a
component. Any
recompiling that is nec-
essary is done auto-
matically at this point.
When “Go” is selected
the component is auto-
matically debugged
and run. If a breakpoint
is used the run will be
stopped at that point.
If a cursor is set at a
certain point selection
of “Run to Cursor” will
cause the component
to run to that point and
stop, making a break-
point unnecessary.
“Extract” does just that
-- extracts class, jar or
executables.

...and Power
Building the graphical interface for appli-

cations has never been this quick. When
using the forms editor, buttons, bars, boxes
and many other useful components, they
are clicked and dragged from a toolbar on
the right. By right-clicking on them it is pos-
sible to set their properties and functions. If
more than one of the same component is
needed, a click on the “Duplicate” button on
the toolbar will create another of the select-
ed component. The spacing and alignment
of the components can be adjusted quickly
by use of the “Layout” menu.

SuperCede also has the ability to create
data-aware components. It is possible to
communicate with a database without writ-
ing SQL statements, although they may be
created if desired. The data source is
imported by selecting the “Data Sources”
from the Browser box, right-clicking the
Browser pane and choosing “Import” from
the popup menu. This opens the “Data
Sources Properties” dialog box. The appro-
priate URL, driver, user name and password
are then filled in.

I once helped on an application that
needed some last-minute, fine adjustments.
It seemed that every time we went back and
ran the application, it was still just a couple
of pixels off here and a fraction of a hair off

there. We couldn’t tell what the exact
results of our changes would be until we
recompiled and ran the application. This
ended up costing us a night’s sleep.
SuperCede has come up with an ingenious
way of solving a problem like this. They call
it their “Flash Compiler.” It provides an
interactive environment in which programs
can be changed as they run. First, click in
the Component window, select the appro-
priate source files and change the code.
When “Update” is chosen from the Compo-
nent window, the program is recompiled as
it runs. The changes made will appear while
the application is running!

SuperCede offers some other neat
debugging features as well. A breakpoint
can be set by toggling through the code to
the desired breakpoint, right-clicking and
selecting properties. If “Tracepoint” is
selected, rather than “Breakpoint,” the
application will not stop but will display a
message window when the program reaches
this line.

Using the “Debug Scratch Area” enables
you to examine anything accessible from
the current program scope. Expressions or
statements can be entered and their results
can be viewed instantly. Clicking the “Debug
Scratch Area” inspector button at the
desired breakpoint does this. This can be
used to evaluate or execute either expres-

sions or full blocks of code.
SuperCede also offers full interoperabili-

ty in these other languages:
• C++: Existing C++ objects can be used as

if they were developed in Java. The
library can either be imported and built
into the Java application, or calls can be
made directly from Java code.

• ActiveX: Supercede includes ActiveX con-
trols but allows installation of your own.

• Visual Basic: Import existing Visual Basic
form files into the SuperCede IDE. The
form will automatically be converted to
an equivalent Java source file.

SuperCede is perhaps the most powerful
and complete Java IDE I’ve yet seen. Its main
highlight is that it maintains this power
without giving up simplicity of use. My C++
buddy was glad I shared this information
with him. Now if I could just get him to
return the favor and bring back the lawn
tools he’s borrowed.

About the Author
Edward Zebrowski is a technical writer based in
Orlando, FL. Ed runs his own Web development com-
pany, ZebraWeb, and can be reached on the Net at
zebra@rock-n-roll.com.

Figure 2: The Component window is one of the best organized I’ve seen

zebra@rock-n-roll.com

56 • VOLUME: 3 ISSUE: 7Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

If you have created distributed enter-
prise applications, you would have had to
deal with naming services and/or directory
services in one form or another. Your appli-
cations would have needed to use these
services to ensure that they gained access
to distributed enterprise resources in an
integrated and consistent manner. If you
were creating smaller or more localized sys-
tems, however, you probably would have
implemented solutions that did not use or
need to know about naming or directory
services.

Recently, a number of factors have con-
spired to ensure that the days of not con-
sidering or using a naming service and/or a
directory service are probably numbered.
The computing world has become more
distributed and the resources more vast;
finding these resources using naming and
directory services has become pure neces-
sity. Systems that were reasonably isolated
in the past are now becoming part of large,
integrated intranets, and in turn are merg-
ing or using the Internet. The upshot? A
need for integrated naming and directory
services.

The cost and availability of products
implementing these services have made
them available to a wide audience, not just
the domain of large and expensive systems.
With this in mind, it is no surprise to learn
that future versions of Java will include
facilities to make it easier for everyone to
create applications that use naming and
directory services. Specifically, JDK 1.2 will
include: (1) a transient implementation of
the CORBA Naming Service; (2) classes and
interfaces to communicate with a CORBA
Naming Service; and (3) the Java Naming &
Directory Interface (JNDI) as a standard
extension to enable access within Java to
any naming or directory service.

This will bring the world of naming and
directory services to everyone in the Java
world, and probably means that a naming
service should be standard in every Java

application. This article focuses on the
naming services and explains:
• What a naming service and directory ser-

vice are
• The CORBA Naming Service
• How to use the CORBA naming service

facilities included in JDK 1.2
• JNDI 1.1

What are naming and directory ser-
vices? A naming service lets you find
resources in a distributed system using
human-readable names. This contrasts with
a directory service that provides a database
of information about the resources in the
distributed system and how to interact
with them. By its very nature, a directory
service incorporates a naming service.
Sometimes these services are so closely
intertwined that it is difficult to distinguish
between the two. From a Java application
development perspective, our interest in
this article is the naming service, the inter-
face we deal with, not the underlying direc-
tory service.

The CORBA Naming Service
This service (also known as the Com-

mon Object Services Naming Service – Cos-
Naming for short) became an OMG stan-
dard in September 1993. It provides a prin-
cipal mechanism through which an ORB-
based system can locate objects it intends
to use. The purpose of the service was not
to reinvent new naming and directory ser-
vices, but to provide an object-oriented
interface to existing nonobject-based name
and directory services, such as the DCE
CDS, ISO X.500, Sun NIS+ and the Internet’s
LDAP. Key design points for the specifica-
tion included the following:
• The design imparts no semantics or inter-

pretation of the names themselves.
• Clients need not be aware of the physical

location of the name servers.
• Existing names and directory services

employed in different network computing

environments can be encapsulated trans-
parently using name contexts.

Because the CORBA Naming Service is a
specification, it can have many different
implementations and clients may differ in
how they use it. Although it is possible to
find an object using the standard “mini-
naming service” provided by the standard
ORB object invocation services, the CORBA
service provides significant advantages:
• An object’s interface name is defined at

compile time. To change an interface
name requires that you recompile your
applications. A naming service, on the
other hand, allows object implementa-
tions to bind logical names to its’ objects
at runtime.

• An object may implement only one inter-
face name, but the naming service allows
you to bind more than one logical name
to a single object. (When I mention a nam-
ing service in this article, I will be refer-
ring to the CORBA Naming Service.)

Overview
The naming service maps human-read-

able names to object references and stores
those names in a namespace. This name-to-
object reference is called a name binding.
To resolve a name means to find the object
associated with the name. To bind a name

What they are and how to use them
by David Cittadini

JDK Naming Services:
COSnaming and JNDI

CORBACORNER

The explosion of support for the Java
platform over the past three years has
not been without some problems; this
month David Cittadini explores the two
bundled JDK 1.2 services for mapping
string names ("human readable"
names) into references to which (in
CORBA parlance) requests can be sent.
JNDI and COSnaming provide similar
services; where do they come from and
how do they compare?

Richard Soley
Editor, CORBACORNER
President and Technical Director of the
Object Management Group, Inc.

57VOLUME: 3 ISSUE: 7 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

is to create a name-to-object association.
You have the option to associate one or
more names with an object reference. Every
object has a unique reference. The naming
service organizes the namespace in a tree-
like structure of naming contexts. A naming
context contains a list of one or more
names that have been bound to an object
or to another naming context object. Name
context hierarchies enable clients to navi-
gate through the different naming context
trees to find the objects they want. Naming
contexts from different domains can be
used together to create federated name ser-
vices for objects.

You can reference an object using a
sequence of names that forms a hierarchi-
cal naming tree. This sequence of names
is known as a compound name. You
always define a name relative to its nam-
ing context. The last component in the
compound name is known as the object’s
simple name. You can start from any con-
text and use a sequence of names to
resolve a name. An example structure of a
CORBA Naming Service is shown in Figure
1; a compound name would be
/Offices/Australia/Melbourne/David, where
Offices, Australia and Melbourne are the
context names and David is the simple
name

The Java Interfaces
All CORBA interfaces are defined using

the language-neutral OMG Interface Defini-
tion Language (IDL). The OMG then pro-
vides language-specific mappings from the
OMG IDL to Java (see the OMG IDL-to-Java
Language Mapping document orbos/98-01-
06 Final), enabling implementation of the
CORBA interfaces in Java. The CosNaming
module (mapped to the org.omg.CosNam-
ing package in Java) provides all the inter-
faces required by the CORBA Naming Ser-
vice with the resulting key Java interfaces
as follows:
• NamingContext: This, the central inter-

face in CosNaming, provides operations
to bind names to object references and
creates subcontexts to resolve names to
object references.

• NameComponent: This represents the
names, defined as sequences of Name-
Component objects. All that is really
required is to set the id for the Name-
Component.

• BindingIterator: The NamingContext list
method returns a BindingIterator object
that enables you to iterate on a set of
names and thus traverse the naming hier-
archy.

Specific Java ORB vendors implement
these interfaces to provide the specific ser-
vices and functionality of their products.

How To Use the Naming Service
NamingContext and BindingIterator are

the two key interfaces that implement the
naming service. NamingContext objects
contain a set of name-to-object bindings.
The new_context method returns a naming
context. The bind_new_context method
creates a new context and binds it to the
name you supply. You invoke the bind
method on the NamingContext object to
associate an object’s name with a naming
context. You can use rebind to bind a name
that already exists; this will create a naming
hierarchy. You unbind to remove a name
from a binding context. Finally, the destroy
method deletes a naming context.

You can find a named object by using
the resolve method. This will retrieve an

object bound to a name in a given context.
You can then use the list method, which
returns a BindingIterator object to iterate
through a returned set of names.

Using the CORBA Naming Service
in JDK 1.2

JDK 1.2 comes with the following:
• Java IDL Object Request Broker: This is

compliant with the CORBA/IIOP 2.0 Spec-
ification (OMG document orbos/97-02-25)
and supports transient CORBA objects –
objects with lifetimes limited by their
server process' lifetime.

• Java Mapping of the CORBA Specifica-
tions contained in the following pack-
ages:
– org.omg.CORBA contains the core

CORBA interfaces and classes.
– org.omg.CORBA.ContainedPackage con-

tains a class describing a CORBA object
in a CORBA container.

– org.omg.CORBA.ContainerPackage con-
tains a class describing a CORBA con-
tainer object.

– org.omg.CORBA.InterfaceDefPackage
contains a class that is the description
of a CORBA interface definition.

– org.omg.CORBA.ORBPackage contains
a class for the CORBA InvalidName
exception.

– org.omg.CORBA.portable contains
classes and interfaces for developing
ORB implementations.

– org.omg.CORBA.TypeCodePackage con-
tains classes for CORBA exception that

can be thrown by TypeCode operations.
– org.omg.CosNaming contains classes

and interfaces for communicating with
the CORBA Naming Service.

– org.omg.CosNaming.NamingCon-
textPackage contains helper and holder
classes for CORBA exceptions that can
be thrown by the CORBA Naming Ser-
vice.

• Transient CORBA Naming Service,
tnameserv, stored in the bin directory:
This service does not store any name-
space information and all namespace
data is lost once the naming service is
closed. This provides a base implementa-
tion so that developers can test their
applications, but a full persistent imple-
mentation will require the purchase of a

Offices

Australia

NZ

USA

Melbourne
= Name Context

= Object NameDavid
Greg

Bob

Figure 1

58 • VOLUME: 3 ISSUE: 7Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

commercial naming service.

In addition to these components includ-
ed in the JDK, you can also download the
idltojava compiler free from the Java Devel-
oper Connection. idltojava is hard-coded to
use a default preprocessor. On Windows
machines it uses the MS Visual C++ pre-
processor (although this can be changed).
Therefore, to use idletojava you have to
have a compatible preprocessor.

Using the JDK 1.2 Naming Service
The following example shows how to

develop a simple application using the JDK
1.2 naming service. A more complex exam-
ple could have been created, but this sim-
ple one is excellent for the purpose. We will
create a distributed version of the “Hello
World” application. For all intents and pur-
poses, it will operate as a standard ORB-
based application except that we will use a
naming service to find the object instead of
letting the ORB try and find it. The “Hello
World” program has a single operation that
returns a string to be printed.

The resulting application will operate
as follows: the JDK 1.2 tnameserv will be
started. A HelloServer will be started
and this will:
• Create and initialize the ORB (the

default ORB in JDK 1.2).
• Create a HelloServer and register it

with the ORB.
• Get the root naming context from

the transient naming service.
• Bind an object reference of the Hel-

loServer to the name “Hello” in the
naming context.

• Wait for invocations from the client.

A HelloClient will be started and this
will:
• Create and initialize the ORB.
• Get the root naming context from the

transient naming service.
• Use the naming context to resolve the

object named “Hello” to an object refer-
ence. This will return an object reference
to the remote HelloServer.

• Use the object reference and call the Hel-
loServer’s sayHello() method. The ORB
will handle the communications and the
operation will return a string from the
remote HelloServer.

• Print the string returned from the Hel-
loServer.

Creating the Application
Step 1: Create a simple Hello interface in
hello.idl as follows:
module HelloApp
{
interface Hello
{

string sayHello();
};
};

Step 2: Use the idltojava compiler as fol-
lows to compile the hello.idl file into the
required Java mapping:
idltojava Hello.idl

This will automatically produce the fol-
lowing files (do not modify them):
Hello.java
HelloHelper.java
HelloHelper.java
_HelloImplBase.java
_HelloStub.java

Step 3: Use the JDK 1.2 Java compiler and
compile the foregoing classes:
javac *.java

Step 4: Create the HelloServer.java source
file as in Listing 1.

Key points of the code include the fol-
lowing: HelloServant extends the _HelloIm-
plBase server-side skeleton automatically
created by the idltojava compiler. Typically,
a naming context is passed to a naming
server when it is started. You will always
invoke resolve_initial_references to obtain
the initial naming context regardless of how
the ORB finds it. The ORB method
resolve_initial_references returns a refer-
ence of type Object so we must narrow it to
the derived NamingContext type. The Nam-
ingContextHelper is a helper object auto-
matically generated by the idltojava com-
piler. We create a naming context called
“Hello” and rebind it relative to the initial
naming context.

Step 5: Create the HelloClient.java source
file as in Listing 2.

Key points of the code include the fol-
lowing: we use almost exactly the same
process as HelloServant except that instead
of binding a name to a naming context, we
resolve a name. The resolve returns an
object reference with which we can invoke
methods: in this case, the sayHello()
method.

Step 6: Compile HelloServer.java and Hel-
loClient.java, ensuring that the HelloApp
package is correctly referenced in your
classpath.
javac HelloServer.java HelloClient.java

Running the Application
Step 1: Start the transient naming service.
tnameserv -ORBInitialPort 900

Step 2: Start the HelloServer.
java HelloServer -ORBInitialPort 900

Step 3: Start the HelloClient.
java HelloClient -ORBInitialPort 900

The outcome is that the HelloClient will
print the string “Hello World” to the con-
sole.

Using Other CORBA Naming
Services
You may decide that the transient nam-

ing service is not enough for your pro-
duction system, that you want to use

something like Iona’s ORBIX or Borland’s
VisiBroker in production. This will require
no changes to the previous example. All
you need to do is start the required naming
service and ensure that the clients and
servers use the correct port. That’s it! The
following shows the same example being
run using Borland’s VisiBroker.

Step 1: Start the VisiBroker Smart Agent.
start osagent -c

Step 2: Start the naming service.
java -DORBservices=CosNaming
-DSVnameroot=HelloTest -DJDKrenameBug
com.visigenic.vbroker.services.CosNaming.Ext
Factory HelloTest namingLog

-DORBservices=CosNaming is a required
parameter for initializing the ORB to use
the naming service. -DSVnameroot=Hel-
loTest sets the root context for the naming
service. -DJDKrenameBug is a work around
for a bug in the Windows JDK.

Step 3: Start the HelloServer.
java -DORBservices=CosNaming
-DSVnameroot=HelloTest HelloServer

Step 4: Start the HelloClient.

“You can reference
an object using

a sequence of
names that forms

a hierarchical
naming tree.”

“You can reference
an object using

a sequence of
names that forms

a hierarchical
naming tree.”

59VOLUME: 3 ISSUE: 7 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

java -DORBservices=CosNaming
-DSVnameroot=HelloTest HelloClient

JNDI
JNDI, a new addition to the Java APIs,

provides Java with a unified interface to mul-
tiple naming and directory services. It does-
n’t matter what underlying implementations
you use because your interface at the appli-
cation level will always be the same.

JNDI provides both an API for almost all
software developers and a Service Provider
Interface (SPI) for the underlying service
providers. These interfaces are contained
in three packages:
• javax.naming for the naming operations
• javax.naming.directory for the directory

operations
• javax.naming.spi, which contains the SPI

JNDI has the following key benefits:
• It integrates multiple naming and directo-

ry interfaces into a single interface.
• It takes advantage of the Java environ-

ment by using native Java objects for all
processing.

As a result, messy object type conver-
sions are eliminated. The API is simple
and clean. As with all Java APIs, a lot can
be done with a little.

The Naming Interface
The core interface in javax.naming is

Context. Like NamingContext in the
CORBA specifications, it defines basic
operations such as adding a name-to-
object binding, looking up the object
bound to a specified name, listing the bind-
ings, removing a name-to-object binding
and creating and destroying subcontexts,
etc. Of all the operations, lookup() will
probably be used most often. This will
return an object of whatever class is
required by the Java application. One deals
with complete Java objects and not generic
Java wrappers. This approach differs from
the CORBA approach in which data is
described and wrapped by generic objects.
The JNDI approach makes it much easier
and cleaner to deal with naming services in
the Java world while still having the flexi-
bility of the world promised by the CORBA
Naming Service.

Other key classes and interfaces in
javax.naming include:
• Binding, which represents a name-to-

object binding found in a context
• CompositeName, which represents a

composite name that is a sequence of
component names spanning multiple
namespaces

• CompoundName, which represents a
name from a hierarchical namespace

• InitialContext, which is the starting con-

text for performing naming operations
• Name, which represents a generic name
• Reference, which represents a reference

to an object found outside the
naming/directory system

The Directory Interface
Unlike the CORBA Naming Service, JNDI

extends its world to include the directory
service. The DirContext interface enables
the directory capability by defining meth-
ods for examining and updating attributes
associated with a directory object. Each
directory object contains a set of zero or
more objects of the class Attribute. An
Attribute represents an attribute associat-
ed with a named object and is denoted by a
string identifier; it can have zero or more
values of any type.

Once again, DirContext.search() will
probably be the most commonly used oper-
ation. This supports content-based search-
ing and returns the matching directory
objects along with the requested attributes.
Other key classes and interfaces in
javax.naming.directory:
• Attributes represent a collection of attrib-

utes.
• InitialDirContext is the starting context

for performing directory operations.
• SearchControls encapsulates factors that

determine the scope of search and what
gets returned as a result of the search.

• SearchResult represents an item returned as
a result of the DirContext.search() methods.

The Service Provider Interface
The SPI provides a way for service

providers to develop and hook up their

naming and directory implementations to
the JNDI. JNDI allows specification of
names that span multiple namespaces.
Thus the SPI provider methods allow differ-
ent provider implementations to cooperate
so as to complete client JNDI operations.

Service Provider Reference
Implementations

In addition to providing the SPI, JNDI 1.1
also provides reference implementations
for the following naming and directory ser-
vices:
• CORBA Naming Service (as used in the

following example)
• LDAPv3
• NIS
• File system

Most major naming and directory ser-
vice vendors have made a commitment to
support JNDI and develop specialized SPI
implementations. To use these reference
implementations, JNDI 1.1 requires that
certain environment variables or system
properties be set, thus providing JNDI
with information on the service
provider configuration. This may not
be how commercial providers imple-
ment their solutions, but it is a good
way to ensure that the required set-
tings are not hard-coded into the solu-
tion. All reference implementations
require you to set the java.naming.fac-
tory.initial system property to the
name of the factory class that produces

the initial context implementation (you
set system properties via the -D switch

when you run java). Some service
provider reference implementations also
require the setting of specialist properties
as in Listing 3.

In addition, with the CosNaming server
provider reference implementation, you
will also need to set java.naming.corba.orb
(see the next example and Listing 4).

The Outcome
This example will do exactly the same as

the JDK 1.2 example previously outlined,
except that instead of using the CORBA
APIs we will use the JNDI APIs. This will also
use the reference implementation of the
CosNaming SPI provided in the JNDI 1.1.

Creating the Application
Steps 1 to 3 are the same as for the previ-
ous JDK 1.2 example.

Step 4: Create the HelloServer2.java source
file as in Listing 4.

Key differences with this version of Hel-
loServer2 (compared to HelloServer) are
that our process to get a naming context is
considerably easier. Instead of calling

The JNDI
approach is easier

and cleaner in
dealing with

naming services

“The JNDI
approach is easier

and cleaner in
dealing with

naming services”

60 • VOLUME: 3 ISSUE: 7Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

resolve_initial_references and then narrow-
ing the object using NamingContextHelper
in the CORBA naming service example, with
the JNDI example all we do is create a new
InitialContext. In addition, in the CORBA
naming service example we create a Name-
Component and rebind that to the naming
context, whereas in the JNDI example we
can rebind the object directly, making the
process much simpler.

Step 5: Create the HelloClient2.java source
file as in Listing 5.

Key differences with this version of Hel-
loClient2 (compared to HelloClient) are
that our process to get a naming context is
considerably easier. Instead of calling
resolve_initial_references and then nar-
rowing the object using NamingContex-
tHelper as in the CORBA naming service
example, with the JNDI example all we do is
create a new InitialContext. Note that the
InitialContext has been set using the envi-
ronment variable set at
java.naming.corba.orb (this is not
required, but is a nice implementation
approach). In the CORBA naming service
example we create a NameComponent and
resolve that to the naming context; in the
JNDI example we can look up the object
directly, making the process much simpler.

Step 6: Compile HelloServer2.java and Hel-
loClient2.java ensuring that the HelloApp
package is correctly referenced in your
classpath.
javac HelloServer2.java HelloClient2.java

Running the Application
Step 1: Start the transient naming service.
tnameserv -ORBInitialPort 900

Step 2: Start the HelloServer2.
java -Djava.naming.factory.initial=com.sun.

jndi.CosNaming.CNCtxFactory
HelloServer2 -ORBInitialPort 900

When running an application using JNDI
we need to set the system property, telling
JNDI which naming service to actually use.
In this example we will use the CORBA nam-
ing service. Note that the default port for
the naming service is 900. You can reset
this, however, by resetting the
org.omg.CORBA.ORBInitialPort system
property (as undertaken with the -ORBIni-
tialPort argument above).

Step 3: Start the HelloClient2.
java -Djava.naming.factory.initial=com.sun.

jndi.CosNaming.CNCtxFactory
HelloClient2 -ORBInitialPort 900

Summary
Naming services provide a way to find

resources using names. In a world of
increasing complexity and interconnectivi-
ty, it has now become mandatory to use
these services. Therefore, no matter how
simple your Java application is, you should
seriously consider designing and imple-
menting it so that it uses a naming service
to find the resources required by your
application. The new version of the JDK
makes the choice of using a CORBA Naming
Service easy as one is provided free in the
JDK itself. Although this will not provide all

the functionality you need – after all, it’s
only a transient service – it will give you
everything you need to develop an applica-
tion that uses a naming service. That’s half
the battle. As can be seen from the exam-
ples, using a naming service is not really a
complex process, but they add much power
and flexibility to the implementation of
your applications.

With the advent of JDK 1.2, Java now
brings the use of CORBA Naming Services
to the masses. However, the additional
introduction of JNDI 1.1 extends this func-
tionality so you can use any naming service
and any directory service as well. For the
first time, the power of both services is
integrated into a simple implementation
independent Java API. The JNDI allows you
to go beyond just CORBA Naming Services
to provide an integration point for all nam-
ing and directory services in an enterprise.
By using JNDI, you can get access to any
naming and directory service from anyone,
anywhere, anytime, and thus increase the
power of Java as a key tool in the enterpris-
es of the future.

About the Author
David Cittadini is based in Melbourne, Australia, and
is a director of software development and consulting
companies in Australia and New Zealand. He spe-
cializes in developing and consulting in leading-edge
technologies, enterprise architectures and distributed
enterprise systems. He is a member of the OMG and
is also a Sun-certified Java developer. He can be
reached by e-mail at David.Cittadini@tb91.com.

Listing 1.
// The package containing our stubs.
import HelloApp.*;
// HelloServer will use the naming service.
import org.omg.CosNaming.*;
// Special exceptions
import org.omg.CosNaming.NamingContextPackage.*;
// All CORBA applications need these classes.
import org.omg.CORBA.*;

public class HelloServer
{
public static void main(String args[]) {
try{
// Create and initialize the ORB
ORB orb = ORB.init(args, null);

// Create the servant and register it with the ORB
HelloServant helloRef = new HelloServant();
orb.connect(helloRef);

// Get the root naming context
org.omg.CORBA.Object objRef =

orb.resolve_initial_references("NameService");
NamingContext ncRef = NamingContextHelper.narrow(objRef);

// Bind the object reference in naming
NameComponent nc = new NameComponent("Hello", " ");
NameComponent path[] = {nc};
ncRef.rebind(path, helloRef);

// Wait for invocations from clients
java.lang.Object sync = new java.lang.Object();
synchronized(sync){
sync.wait();

}

}
catch(Exception e) {
System.err.println("ERROR: " + e);
e.printStackTrace(System.out);

}
}
}

class HelloServant extends _HelloImplBase {
public String sayHello() {
return "\nHello world!!\n";

}

David.Cittadini@tb91.com

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

61VOLUME: 3 ISSUE: 7 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

62 • VOLUME: 3 ISSUE: 7Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

ObjectShare Announces
PARTS™ for Java
(Irvine, Ca) - ObjectShare has
released the Standard and Lite
editions of PARTS for Java.
Combined with the previously
released Professional edition,
developers can now choose a
PARTS package that provides
the feature set best suited to
their needs.

PARTS for Java Lite is the
entry-level edition. It includes
the visual programming tool’s
support for JavaBeans and
JFC/Swing provided in the rest
of the PARTS line, and provides
the same open support for
switching between versions of
the JDK.

PARTS for Java Standard
builds on the Lite product, with
the addition of JavaBeans for
creating database applications
quickly using JDBC. It also
includes Oracle Lite along with
jKit/Grid and Netscape Naviga-
tor. The powerful database
components include Object-
Share’s Form bean which can
automatically generate user
interfaces for any domain
object. These components
work with any JDBC data-
source.

PARTS for Java Standard is
available on CD only and costs
$795, with an introductory price
of $500 until the end of July.
PARTS for Java Lite is available
electronically and costs $149.
PARTS for Java Professional
lists at $1495.

For more information, call
ObjectShare tollfree at 800 759-
7272 or visit their Web site at
www.objectshare.com.

TowerJ™ 2.0 Released
(Austin, TX) - Tower Technolo-
gy, a provider of optimizing
native Java deployment compil-
ers and run-time software, has
released TowerJ 2.0, a high per-
formance server-side Java exe-
cution environment.

TowerJ converts Java byte-
code into optimized .exe’s,
which allow Java applications
to execute with reliable C++-like
performance across a range of

server-class computers.
For more information, visit

Tower’s Web site at
www.twr.com or
www.towerj.com.

InterBase 5.0™ Released
(Scotts Valley, CA) - InterBase
has announced the release of
InterBase 5.0. This version com-
bines ease of installation, use
and maintenance, a versioning
architecture and features such
as event alerters and arrays.

New features include: Super-
Server architecture on all plat-

forms, InterClient (the all-Java
JDBC driver), improved perfor-
mance in the query optimizer,
UDF (User Defined Function)
library, group privileges, index
garbage collection, SQL roles,
international character sets,
cascade declarative referential
integrity, new security check for
reference privileges, attach-
ment governor, gbak improve-
ments and multifile backup,
new temporary file manage-
ment and guardian process to
monitor server up time.

For more information, visit

InterBase’s Web site at
www.interbase.com or contact
Amelia Arnett at 408 430-1506 or
e-mail her at aarnett@inter-
base.com.

KL Group in Top 100
(Toronto, ONT) - KL Group has
been recognized for the third
year in a row as one of the 100
fastest growing companies in
Canada, with revenues growing
an impressive 692% from 1992
to 1997. The survey was based
on data compiled from over a
half million ballots sent out
across the country.

KL Group
recently
launched its
new JProbe™

Java profil-
ing tool.
JProbe and
JClass, KL
Group’s fam-
ily of certi-
fied 100%
Pure Java
JavaBean
components are used by pro-
fessional developers world-
wide. JClass has also catalyzed
a number of key technology
partnerships with leading ven-
dors, including Inprise and Sil-
verstream.

For more information, visit
www.klg.com.

(Boulder, CO) - Rogue Wave
Software, Inc. has announced
that it’s shipping
Analytics.h++. The product is
a new suite of compo-
nents and classes
that enables devel-
opers to focus on
higher-level, con-
ceptual issues in
designing and
building business
data models.

Analytics.h++is
an ideal solution
for development
teams building cus-
tom, in-house appli-

cations that perform sophisti-
cated data analysis. Virtually
all applications have four
data-driven tasks: access,

management, analysis and
presentation. Within a

software parts
model, Ana-
lytics.h++
offers the
powerful

building
blocks
developers

need to ana-
lyze a broad range of

applications, such as finan-
cial modeling, signal process-

ing, curve fitting, computer
animation, simulation model-
ing and decision support.
These powerful sets of classes
and components give develop-
ers the flexibility to concen-
trate on building the appropri-
ate business models without
having to focus time and
effort on analytics to manipu-
late data.

Analytics.h++ costs $2995
for the product and $895 for
support per platform selected.
For more information, call
Rogue Wave Software tollfree at
888 442-9641 or visit their Web
site at www.roguewave.com.

Rogue Wave Software, Inc. Ships Analytics.h++™

(New York, NY) - Inprise Corp.
has announced Borland Del-
phi 4, a major new version of
its award-winning rapid appli-
cation development tool for
Windows. Designed to
help corporations
deliver large scale
enterprise-class
business applica-
tions faster, Del-
phi 4 simplifies
the integration of
client, middleware
and database develop-
ment. Delphi 4 now includes
support for both CORBA and
COM, the leading distributed
computing standards, as well

as the Microsoft Transaction
Server (MTS) and the new Ora-
cle8 database server. Delphi
will be available in the follow-
ing versions: Delphi 4
Client/Server Suite, Delphi 4

Professional and Delphi 4
Standard.

Delphi 4 includes
enhancements that
allow organizations to
integrate data through-

out their enterprise and
make it available on any

desktop at any time.
For more information,

including pricing, visit Bor-
land’s Web site at www.bor-
land.com.

Inprise Announces Delphi 4™

63VOLUME: 3 ISSUE: 7 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

64 • VOLUME: 3 ISSUE: 7Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

ILOG JViews™ Receives
World Class Award from
Java Developer’s Journal
(Mountain View, CA) - ILOG
S.A. has announced that ILOG
JViews™received the World
Class Award from Java Devel-
oper’s Journal. ILOG JViews
is a 100% Pure Java class
library for developing high
performance, intuitive 2D
graphic displays. It is used in
conjunction with conventional

graphical user
interface compo-

nents, including
AWT, JFC and
JavaBeans, to
create inter-

faces such as
network topolo-

gies, rich map dis-
plays and customized editors.
ILOG JViews has been selected
in recent months by a growing
number of network manage-
ment vendors as a key compo-
nent for implementing sophis-
ticated Web-based client appli-
cations.

For more information, visit
ILOG’s Web site at www.ilog.com
or call 415 688-0200.

Object Matter Introduces
Beta Visual BSF™

(Miami, FL) - Object Matter will
soon announce the release of
Visual BSF, a new product
based on the BSF core library,
that allows you to design per-
sistent classes that do not
have to inherit from BSF’s base
class and that can use Java’s
Integral objects, primitive data
types, object references and
data structures holding other
persistent objects as persistent
attributes.

Visual BSF is made up of
two components: a GUI based
schema mapping tool and a
supporting core library. The
product will be geared to build-
ing application servers for dis-
tributed systems in the enter-
prise. The heart of the product
will be an object cache that
will be shared by all clients
within an application. The
cache will boost performance
by minimizing actual database
accesses.

For more information, visit
Object Matter’s Web site at
www.objectmatter.com or call
305 718-9101.

DeNova Releases Latest
J’Express™

(Vancouver, BC) - DeNova has
released the latest version of
J’Express, a cross-platform Java

installer, auto-updater and dis-
tributor. Now developers, or
their assistants,
can use a GUI
interface to
create Java
installers inte-
grated with
Swing and an
applet-based
i n s t a l l e r
which sup-
ports the Java
Plug-in.

This new version also ends
the requirement that target
machines need the Java virtual
machine (JVM) before a Java
app can be installed. J’Express
automatically installs the JVM
for the most popular platforms.

Two editions are available.
The Standard edition includes a
wizard to create the installer
and auto-updater, and lists at
$99. The Professional version
includes all of the features of
the Standard edition plus cus-
tomization, finding classes and
distribution, and costs $499.

For more information, visit
www.denova.com or call Nancy
Atwell at 408 490-2852.

(Cambridge, MA) - Integrated
Computer Solutions (ICS) has
announced its “Develop on
UNIX, Deploy Anywhere” strat-
egy, and a new product to sup-
port it. Builder Xcessory
PRO™ 5.0 (BX PRO 5.0) is
the major new release of
ICS’ integrated visual
devfelopment product
suite which allows
UNIX developers to
easily deploy their
applications on
multiple plat-
forms. The BX
PRO product
family serves
developers of
business criti-
cal applications
that need the
reliability and
scalability of UNIX

servers along wih the flexibili-
ty to deliver applications via
any client device.

New features include
enhanced support for manag-
ing large projects, easier inte-

gration of third party
widgets and user C++
components (the
most extensive sup-

port for C++ GUI
development),
simplified migra-
tion from other
GUI builders and
support for Java

AWT 1.1.
BX PRO 5.0 costs

$6,495 with a floating
license with one year of

support. For more
information, call 617

621-0060 or visit the ICS Web
site at www.ics.com.

ICS Announces Deploy Anywhere™

(San Francisco,
CA) - IBM has
announced the
availability of its
WebSphere Appli-
cation Server and
enhancements to
the IBM Web-
Sphere product
line, including
packaging the pop-
ular Apache HTTP
Server with the
WebSphere Appli-
cation Server. IBM
also announced
availability of the
NetObjects Script-
Builder as the first develop-
ment tool for the Websphere
product line. WebSphere’s
products allow customers to

implement e-business solu-
tions.

The line consists of the
WebSphere Application Server,

IBM’s Java servlet-
based Web applica-
tion server, which
helps customers
deploy and manage
Web-based applica-
tions, and WebSphere
Performance Pack, a
Web facilities man-
agement software
that supports rapid
growth at high-vol-
ume Web sites.
WebSphere Applica-
tion Server, for Sun
Solaris, Windows NT
and IBM AIX, is avail-
able in the US for

$795. For more information,
visit IBM’s Web site at
www.software.ibm.com or
www.ibm.com.

IBM Enhances and Expands WebSphere™

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
World class

 AWARD

65VOLUME: 3 ISSUE: 7 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

66 • VOLUME: 3 ISSUE: 7Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

As a Java evangelist, I field many ques-
tions about the so-called new paradigm of
developing and deploying Java/Internet-
based business applications. Will we have
problems in our development phase? Will
the application perform? Will the Microsoft
lawsuits ruin the platform? Will Bill Gates
buy the Brooklyn Bridge?

New paradigms, old paradigms, para-
digms, schmaradigms. Paradigm is consul-
tant talk. Remember all the talk about GUI-
based client/server back when it was touted
as the latest and greatest paradigm? People
asked the same paradigm questions, “How
do we partition and deploy it? How do we get
performance? And where are the standards?”

People never asked the most important
question back then, which is “What are the
gains from building and deploying a GUI
client/server business application?” If some-
body ever did ask such return-on-investment
(ROI) questions and actually got an honest
answer, nobody would have bothered with
GUI client/server computing. The applica-
tions cost a fortune to build and another for-
tune to maintain, and what was the payback?
A more pleasing user interface.

Spurred by the adoption of the Windows
platforms, the GUI gave users a nicer look
and feel. This is what organizations invested
so many millions of dollars for? The bang
from the investment in GUI client/server
was questionable at best. Maybe the organi-
zation got some slight reduction in the user
learning curve, but I doubt it. An entire,
highly profitable industry emerged around
GUI-Windows user training.

In the early years of this decade count-
less resources of time and labor, not to men-
tion hard cash, were spent converting busi-
ness applications to GUI client/server.
Countless tool vendors jumped on the GUI
client/server bandwagon. Many product
generations and thousands of acronyms
later, here we are and what do we have to
show for it? At best, we have a generation of
users who know how to use a mouse and
click on an icon, and a new generation of
developers who are finally beginning to
understand event-driven programming. So
much for the ROI of the GUI client/server
development paradigm.

Now the same people are asking the same
questions about the Java-Internet/Web
development paradigm. But again, they are
not asking the only question that really mat-
ters: the ROI question. As far as I’m con-
cerned, it is the only question to ask.

When it comes to the Java-Internet/Web
paradigm, ROI is the only raison d’être for
Java business applications. And its ROI can
be spelled out in one word: accessibility.
The Java-Internet/Web paradigm allows you
to reach new users (new customers, suppli-
ers, partners, anybody you want) as well as
old users easily.

Accessibility translates into more busi-
ness for you. Here is Java George’s formula
for Java-Internet/Web ROI: Customers +
Accessibility + Product = Sale = Service =
More/Better Business. You can plug in your
own actuals. If they don’t add up to more
and better business for you, then skip Java
and stick with what you are doing. (But
check your math first because you don’t
want to make an error.)

The Internet is the primary catalyst
behind the new paradigm of Java applica-
tions, just as Windows platform was the pri-
mary catalyst behind GUI client/server. With
the Internet population running into the
hundreds of millions worldwide and head-
ing to the billions faster than the speed of
Moore’s Law, Java-Internet/Web is the Titan-
ic of paradigms.

This means that a business providing
products and services to people and organi-
zations via Java-Internet/Web applications
receives a material increase in prospective
customers, and a potentially exponential
increase in customers over time. Also, the
organization that can interface with new
and existing partners through business-to-
business Java applications will reduce oper-
ating costs, shorten business cycles and
increase its ability to respond to market
conditions fast, further adding to the ROI.

Occasionally, people blame Java George
for being overly optimistic towards the Java
platform. But as far as the long term ROI for
this new paradigm, I consider myself a con-
servative. Compared to the GUI client/serv-
er paradigm, Java-Internet/Web is a no-
brainer.

GUI Client/Server vs.
Java-Internet/Web Paradigms:

by Java George

Java George is George Kassabgi, director of
developer relations for Progress Software’s
Apptivity Product Unit. You can e-mail
George at george@apptivity.com.

THE GRIND

“The Java-

Internet/Web

connection is a

no-brainer.”

George@sys-con.com

http://www.JavaDevelopersJournal.com 67Java DEVELOPER’S JournalVOLUME:3 ISSUE:7 •

Ad

68 Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

KL Group
Full Page Ad

• VOLUME: 3 ISSUE: 7

